
UNCLASSIFIED 

uMin 
ty Ute 

ARMED SERVICES TECHNICAL INFORMATION AGENCY 
ARLINGTON HALL STATION 
ARLINGTON 12, VIRGINIA 

•»Kl 

UNCLASSIFIED 



N0TI02" When government or other drawings, speci- 
flcatlons or otter data are used for any purpose 
othe/ than ^n connection vith a definitely related 
gove^.: lent procurement operation, the U. 3. 
Govern- 3üt thereby incurs no responsibility, nor emy 
oblige-' on whatsoever; and the fact that the Govern- 
ment wt}  have fomsilated, furnished, or in any way 
suppled the said drawings, specifications, or other 
data is not to be regarded by implication or other- 
wise as in any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or permission to manufacture, use or sell any 
patented invention that may in any way be related 
thereto 



·•· 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLYo 







Proceedings of   the 

Fifth   Symposium 

o n 

Hypervelocity 

\MPACT 

Sponsored by: 

U.S. Navy 
U.S. Army 
U.S. Air Force 

Contract No. 
Nonr-(C)-0020-61(X) 

Tri-Strvice Committte: 

W.W. Atkins, Navy, Chairman 
R i. eichelberg^s-. Army, BRL 
H. L. Davis, Air Force 

Co! radc Sc/iooi of Mines (Conference Host) 
John S. Rir. »hart 



NOTE:    Not inoluded in the published Proceedings of the 
Fifth Hypervelocity Impact Symposium are: 

Welcoming Remarks" by Dr.   John W Vanderwilt, 
President,   Colorado School of Mines. 

Luncheon address,    "The Challenge of Hypervelocity  to 
Education, "by Dr.   John S.   Rinehart,   host to the Symposium 
and Director,   Mining Research Laboratory,  Colorado School 
of Mines. 

Banquet address,   "Academic Standards for the Aerospace Age, " 
by Dr.   William L.   Whitson,   Vice President,  The Martin 
Company,   Denver. 

Discussions taking place during the Symposium were not 
transcribed. 

Some informal opening remarks by session chairmen have 
been omitted. 

The views,   conclusions and recommendations 
expressed  herein do not necessarily  reflect 
the  official  views  or   policies  of  either    the 
United  Stales   Army,    United States   Navy  or 
the United  States  Air   Force. 



TABLE Ob' CONTENTS 

SESSION I - TECHNIQUES 

Page 

INTRODUCTORY PAPER 1 
H.   F.  Swift 

INTRODUCTORY PAPEr   (C) Vol.   II 
H.   F.   Swift 

SUMMARY OF NAV^'    RESEARCH LABORATORY ACCELERATOR 
DEVELOPMENT 23 

C. D.   Porter,   H     F.   Swift and R.   H.   Fuller 

INTERIOR BALLIS"     S OF HYPERVELOCITY PROJECTORS INSTRU- 
MENTED LIGHT C. \S GUN AND TRAVELING CHARGE GUN 53 

P.   G.   Baer • nd H.   C.   Smith 

THE APPLICATION OF THE "q" METHOD OF HYPERVELOCITY GUN 
PROBLEMS     (C) Vol.   II 

D. Pia«    oi a.id H.   M.   Sternberg 

EXPLOSIVE '^.VICES FOR PROJECTING HYPERVELOCITY PELLETS 
UP TO   2i   u KM/SEC   (C) Vol.   II 

S.   K        .nan and J.   11.   Kineke,   Jr. 

EXPERIMENTS WITH A TWO MILLION  VOLT ELECTROSTATIC 
ACCELERATOR 79 

J.   F.   Friichtenicht 

SUMMARY OF SESoJON S5 
H.   F.   Swift 

SESSION 11 -    THEORY 

INTRODUCTORY PAPER 99 
F.   E.   Al    son 

STUDIES OF HYPER"  'LOCITY IMPACT OF METALS 105 
11    G.   Hopkins 

SOME THEOHE'i     .\L MODELS OF HYPERVELOCITY m 
N.   Davids    Y.   K.   Huang and W.   Jaunzemis 

SESSION III -   THEORY 

CHAIRMAN'S REMARKS 134 

H.   G.   Hopkins 



CONTENTS 

Page 

INERTIAL,   VISCOUS AND PLASTIC EFFECTS IN HIGH SPEED IMPACT      135 
T.   D.   Riney and P.   R.   Chernoff 

A THEORETICAL STUDY OF DYNAMIC PLASTIC DEFORMATION UNDER 
IMPACT LOADS 163 

L.   E.   Fugelso 

HYDRODYNAMICS APPLIED TO HYPERVELOCITY IMPACT 
I.    Scaling Laws for Dissimilar Materials 

II.    Role of Melting and Vaporization 
III. Impacts on Thin Targets (not submitted for publication) 

A.   E.   Olshaker and R.   L.   Hjork 
IV. Analysis of the Formation of Meteor Crater,   Arizona;    A Pre- 

liminary Report,   published in Journal of Geophysical Research, 
October,   1961. 

V.     Cratering from a Megaton Surface Burst 
R.   L.  Bjork    (Not submitted for publication) 

185 
225 

PENETRATION BY HYPERVELOCITY PARTICLES 
M.   Zaid 

241 

A MODEL OF NON-EXPLOSIVE IMPACT 
J.   F.   Schipper 

267 

APPLICATION OF ' HYDROD YNAMIC THEORY TO THE LOW STRESS 
RANGE OF HYPERVELOCITY IMPACT PROBLEMS 

I.   M.   Fyfe 
299 

VISCO-PLASTIC FLOW THEORY IN HYPERVELOCITY PERFORATION 
OF PLATES 

Pei Chi Chou 
307 

SUMMARY OF SESSION 
F.   E.   Allison 

329 

SESSION IV EXPERIMENTS 

CHAIRMAN'S REMARKS 
F.    E Howard 

332 

INTRODUCTORY PAPER 
R.  J.   Eichelberger 

333 

OBSERVATIONS OF CRATER FORMATION IN DUCTILE MATERIALS 
J.   H.   Kmeke,  Jr. 

339 

IMPACT EXPERIMENTS ON WAX 
J.   T.   Frasier and B.   G.   Karpov 

371 

CORRELATION OF HYPERVELOCITY IMPACT DATA 
W.   Herrmann and A.   H.   Jones 

389 



CONTENTS 

Page 

REVIEW AND ANALYSIS OF HIGH VELOCITY IMPACT DATA 439 
E. P.   Bruce 

HYPERVELOCITY LAUNCHERS AND HYPERVELOC1TY IMPACT 
EXPERIMENTS AT ARDE, FORT HALSTEAD 475 

F. Smith,  W.  A.   Clayden,   C.   R.   Wall and D.   T.   F.   Winter 

EXPERIMENTAL OBSERA'ATIONS OF IMPACT 497 
S.   M.   Halperson and W.   W.   Atkins 

OBLIQUE IMPACT OF HIGH VELOCITY STEEL PELLETS ON LEAD 
TARGETS 511 

George M.   Bryan 

HYPERVELOCITY IMPACT OF HEATED COPPER 535 
M.   Rockowitz,   C.   Carey and J.   Dignam 

CRATER CHARACTERISTICS DUE TO IMPACTS BETWEEN 4 AND 15 
KM/SEC 549 

E.   Cannon,   W.   A.   Clark and T.   W.   Lee 

SESSION V --EXPERIMENTS 

CHAIRMAN'S REMARKS 565 
Maurice Dubin 

AN EXPERIMENTAL INVESTIGATION OF SINGLE ALUMINUM 
METEOR BUMPERS 567 

D.   Humes,   R.   N.   Hopko and W.   H.   Kinard 

THE PERFORATION OF THIN PLATES BY HIGH VELOCITY 
FRAGMENTS 581 

R.   W.   Watson 

PERFORATION OF FINITE TARGETS BY HIGH VEi OCITY 
PROJECTILES 593 

R.   Vitali,   K.   R.   Becker,  and R.   W.   Watson 

PENETRATION OF THIN  PLATES 611 
K.   N.   Kreyenhagen and L.   Zernow 

HIGH VELOCITY IMPACT PHENOMENA WITH HYPERSTRENGTH 
PARTICLES (C) Vol.   II 

R.   L.    Hill and Fred K.  Howard 

ON THE EFFECT OF PROJECTILE MASS DISTRIBUTION IN HYPER 
VELOCITY IMPACT    (C) Vol.   11 

Donald R.   Dudas 

THE GEOLOGY OF HYPERVELOCITY IMPACT CRATERS 625 
H.   J.   Moore II and R.   V.   Lugn 



CONTENTS 

Page 

HIGH VELOCITY IMPACT INTO PLASTIC FIBREGLASS LAMINATES (S)   Vol.   II 
P.   L.   Cowan and P.   L.   Roney 

MICRO-PARTICLE HYPERVELOCITY IMPACTS FROM RANGER I 645 
W.   M.   Alexander and O.   E.   Berg 

SUMMARY OF SESSION 653 
R.   J.   Eichelberger 

SESSION VI -- APPLICATIONS 

CHAIRMAN'S REMARKS (C) Vol.   II 
R.   C.   Weidler 

INTRODUCTORY PAPER (S) Vol.   II 
W.   W.   Atkins  (S) 

CRATER FORMATION iN MISSILE SURFACE MATERIALS (S) Vol.   II 
J.   G.   Dante 

HIGH VELOCITY PARTICLE IMPACT EFFECTS ON ICBM RE-ENTRY 
VEHICLE STRUCTURES   (S) Vol.   II 

R.   E.   Soloski,   E.   P.   Bruce and A.   M.   Smith 

HYPERVELOCITY IMPACT -- EFFECTS ON SOME ABLATIVE RE- 
ENTRY HEAT SHIE L1J STRUCTURES    (S) Vol.   H 

J.   A.   Hail,   R.   Rockowitz and W.   L.   McKay 

AEROTHERMAL EFFECTS OK HYPERVELOCITY PARTICLE IMPACT 
ON RE-ENTRY  VEHICLES    (S) Vol.   II 

D.   E.   Nestler,   E.   E.   VandenEykel,   D.   A.   Clunies and R.   J. 
Herman 

THERMAL EFFECTS IN HYPERVELOCITY KILL MECHANISMS (S) Vol.   II 
H.   Hoercher 

VULNERABILITY OK RE-ENTRY VEHICLES    (S) Vol.   II 
11.   S.   Kostiak 

A PROTOTYPE  FRAGMENTATION WARHEAD FOR NIKE ZEUS (S) Vol.   II 
T.   W.   Stevens and S.   I).   Stein 

IMPACT EFFECTS AGAINST PROPULSION SYSTEMS    (S) Vol.   II 
K,   N,   Kreyenhagen,   R.   B.   Mortenson and L.   Zernow 

SUMMARY AND DISCUSSION Vol.   II 
W.   W.   Atkins 

ATTENDANCE ROSTER 659 



SESSION   I 

TECHNIQUES 

C H AIRMAN 

VICE    ADMIRAL   CHARLES   B.     MART ELL 

OFFICE   OF   THE   SECRETARY 
OF   DEFENSE 



HYPERVELOCITY BALLISTIC ACCELERATORS 

H.   F.   Swift 

U. S.   Naval Research Laboratory 
Washington,   U.   C. 

INTRODUCTION 

During the past seven years,   there has developed an increasing    eed for 
laboratory facilities capable of accelerating a variety of model configurations to 
hypervelocities.     In response to this need,   a wide range of model-acceleration 
techniques has been developed to the point where many hypervelocity phenomena 
now can be studied directly in the laboratory.    The results of the papers presented 
in this section will show that the capabilities of hypervelocity ballistic facilities 
are advancing at an ever-increasing rate,   widening the range of phenomena 
directly reproducible under laboratory conditions,  and reducing the range of 
extrapolation needed to study presently unattainable ones. 

There are at present four fields of research using data obtained with 
hypervelocity accelerators.    Aerodynamic ballistic facilities that study problems 
concerned with drag and stability of high-speed vehicles,   such as missile.'; and 
space ships,   under conditions encountered during re-entry into the earth's atmos- 
phere are in operation.     Ideally they require accurate scale models of vehicles 
fitted with instrumentation and telemetry equipment that can be launched at full 
vehicle re-entry velocities,     in terms of acceleration performance,   large-bore 
guns  (2 inches or greater) arc needed that can fire models to velocities of 7. 75 
km/sec with peak accelerations below 250,000 g's.    At present,   large instrumented 
models can be successfully launched to 4. 6 km/sec,   and similar inert ones to 6. 7 
k m / s e c. 

Aerophysics studies are being carried out to evaluate the ablation rate of 
high-speed objects re-entering the atmosphere and to determine the characteristics 
of their wakes.     For these studies relatively small homogeneous models of simple 
geometric form will  suffice for the present investigations.    The immediate interest 
is in satellite and missile re-entry velocities,   but preparations are being made to 
study re-entry of deep-space probes and meferoids that can enter the atmosphere 
at speeds  up to 12 km/sec.     At present combinations of gas purr,   explosive,   and 
special accelerator techniques are capable   of fi'ing a variety of models at velocities 
up to 7. 5 km/sec and a limited number of model shapes and materials to 21 km/sec. 

The results of impact, experiments at hypervelocities are being applied to 
three areas of study.     Most interest at present is in the evaluation of techniques 
to destroy ballistii   missiles by fragment attack.     Present requirements for these 
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pressure immedialely behind it below the value within the chamber at the same 
instant of time. A velocity is finally reached a: which the pressure at the rear 
of the projectile drops to zero, ending its acceleration. Thus, a limit of maxi- 
mum projectile velocity exists for a powder- gun. 

To understand the nature of this reduction of pressure with increased 
projectile velocity,   a simple gas-dynamic argument can be used.    As the gas in 
the high-pressure reservoir of a gun flows down the launch tube after a moving 
projectile,   it must expend a fraction of the energy stored in it in the form of 
pressure and temperature to accelerate its own mass up to the projectile's 
instantaneous velocity.    Since the stored energy per unit volume in the gas is 
proportional to its mass per unit volume, the percentage loss is stored energy 
during its acceleration to a particular velocity is independent of its original 
density.     The removal of this stored energy reduces its pressure,   so that the 
pressure immediately behind the projectile falls below that in the reservoir.    A 
projectile maximum velocity is eventually reached at which the gas must expend 
all of its energy accelerating itself,   and its pressure drops to zero.    This veloc- 
ity represents the maximum expansion velocity of the driver gas,   or its "efflux" 
velocity.    For the ideal-gas case; 

,/— 

J    2        R     J~T 
'7-1       '   M 

a = efflux velocity 
a0 = reservoir sound speed 
-y = ratio of specific heats 
R = universal gas constant 
T = gas t-jmperature 
M = gas molecular-wt 

Table 1 

Gas Temp. 
(0K) 

^o Exp enmental 
Gun 

Gun Type 

(km/sec) IVlax Vei (km/sec) 

powd. 3,0üüo 3.46 3. 1 Mann 
He 5,000 7. 20 G. 7 Small piston 
He 12.U00 11.2 

H2 3,000 •J. 3 8. 8 Small piston 

»2 12,000 19. 6 

Efflux Velocity for Various Gas-Gun Reservoir CondHions are Shown in Table 1. 

It must be emphasized that the efflux velocity limitation on peak gun perform- 
ance can be approached only when sufficient gas pressure and launch-tube length 
are available to accelerate the projectile to such velocities that efflux effect is 
dominant. 

The only way to increase gas efflux velocity over a wide range,   and hence 
maximum gun performance,   is to  increase     T/m.    This can be accomplished 
either by increasing the driver-gas temperature or decreasing the molecular 
weight. 
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studies are for models of simple geometric forms made from materials with a 
wide range of densities,   weighing from 2 to 500 grams.     Peak velocities of 9 
km/sec are satisfactory for the present,   but projected future requirements will 
be for similar models at considerably higher- velocities.   Presently available 
techniques cover the entire velocity region of interest,   but the higher velocity 
areas are limited to low-mass models made from low-density materials.    Gas- 
gun facilities are presently under construction that are designed to provide full 
coverage of present antimissile-system evaluation requirements. 

Another impact-study program concerns the effect of both large and micro- 
meteroid impacts into space-probmg vehicles.     For these studies,   projectiles of 
fairly low densities,   wiih masses between 10"^ grams and 10 grams are required, 
with peak speeds up to 85 km/sec.    At present no techniques exist that can reach 
the upper regions of the velocity requirements, but gas guns,   explosives,   and 
special techniques are capable of covering the mass spectrum up to one gram at 
velocities up to ^0 km/sec. 

A field that has benefited from all phases of impact experimentation is 
solid-state physics.     Hypervelocity impacts are capable of producing higher pres- 
sures within a target than those attainable by any other techniques. 

Generally,   ihe accelerator development efforts of the past several years 
have developed capability for studying at least a limited range of all hypervelocity 
phenomena under realistic conditions,   but sigi   ficant benefits will be achieved in 
each area of interest as capability is increased in the future.     Hypervelocity bal- 
listic accelerator development has generally progressed along two main lines of 
approach:    light-gas-gun development and explosive-charge development.    A 
series of techniques has also been developed for specialized acceleration tasks 
that are of importance to the general technology. 

LIGHT-GAS GUNS 

Gun systems powered by reservoirs of low-molecular-weight gas at high 
temperature and high pressure have found wide use as model projectors in hyper- 
velocity range facilities throughout the country.     Presently existing units are 
capable of firing projectiles weighing 0. 1 gram to 10 km/sec and 900 grams to 
3. 6 km/sec.    The basic limitations on the performance of gas-powered ballistic 
accelerator's have been the subject of intense study in recent years.     Results of 
these studies have provided the information required for the design of present 
high-performance guns. 

The nature of gun-velocity limitations can best be understood for the case 
of the simple powder gun.     The firing sequence of a powder gun begins with ignition 
of the solid propellanl in a sealed chamber at one end of a launch tube.     The pro- 
pellant is rapidly consumed,   liberating a volume of nigh-temperature and high- 
nri'SKiire gas th;it exerts an even pressure on the walls of the chamber,   one of 
which is the rear surface of the projectile.     Since the projectile is relatively free 
to move, it accelerates,   and ps long as the projectile velocity remains low,   the 
pressure on its rear surface remains the same as that on the rest of the chamber. 
As the projectile velocity increases,   however,  a pressure gradient is observed 
to develop between the stationary chamber and the projectile that reduces the 
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ilslium and Steam Gun 

The most direct approach to increasing the efflux velocity of the driver-gas 
in a gun is to devise a propellant that will yield as low-molecular-weight gas as 
possible at as high a temperature as possible when burned.    A widely used high- 
efflux-velocity propellant is a gaseous mixture of helium with a stoichiometric 
mixture ratio of hydrogen and oxygen.    Upon ignition,   the hydrogen and oxygen 
react,  yielding steam with a molecular weight of 18 and a large amount of heat. 
Thermal equilibrium is rapidly established between the steam and helium,   thus 
generating a high-temperature gas mixture with a mean molecular weight between 
that of helium and steam.    Such a gun is shown in Figure 1.    After gas reaction, 
the reservoir pressure is sufficient to rupture the diaphragm,  and the helium- 
steam mixture accelerates the projectile down   the launch tube.    The helium 
added to the hydrogen and oxygen serves the double purpose of preventing detona- 
tion during the steam formation and reducing the mean molecular weight of the 
heated gas mixture.    There is an optimum ratio of helium to steam at approxi- 
mately 20 percent steam by molecular concentration for maximum efflux velocity. 
An optimum ratio occurs,  because addition of steam increases gas temperature 
and molecular weight at different rates. 

RESERVOIR 

--i/ f      H2. 02. He 

PRESSURE 
DIAPHRAGM 

LAUNCH   TUBE 

PROJECTILE 

(a)  SINGLE  STAGE 

RESERVOIR 2 

H2. 02. He 

RESERVOIR 1 

He, 02. He 

iv            / 

LAUNCH  TUBE 

» 

\         / 
DIAPHRAGM 1 

DIAPHRAGM 2 

(b)   DOUBLE  STAGE 

PISTONLESS  LIGHT GAS GUNS 

Figure 1 
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Since the energy released froro steam formation must be used to heat 
more gas than it generates,   energy densities are restricted to values below those 
common for powder propellanls.    This limitation on energy density limits peak 
pressures in turn,   so that single-stage helium-steam guns must operate at rela- 
tively low peak acceleration.     For this reason,  they have found their principle 
application in the acceleration of large,   relatively delicate models to the low 
hypervelocily region. 

Somewhat higher velocities have beer, achieved with H2,   O2,   He guns by 
increasing the energy density of the driver-gas mixture through shock compression. 
A typical gun design of this type is shown in Figure 1.    Here,  two reservoirs 
charged with hydrogen,  oxygen,  and helium are connected end to end.    The front 
reservoir is ignited,   thereby increasing its temperature and pressure to near the 
rupture level of diaphragm 2.    The rear reservoir (at higher initial density) is 
then ignited,   rupturing diaphragm 1 and driving a strong shock wave through the 
front reservoir.    This shock wave heats the gas in the front reservoir and ruptures 
diaphragm 2,   allowing projectile acceleration to begin.    The high-density gas from 
the rear reservoir ^lows rapidly into the front one during the early stages of pro- 
jectile acceleration,  thereby compressing the driver-gas and further increasing 
the temperature and pressure of the diiver-gas mixture.    Double-stage helium, 
steam guns are generally smaller than single-stage ones,   since they are more 
complicated,   and peak gas pressures can be made higher.    They have been used 
to accelerate smaller,   less delicate models to somewhat higher velocities at 
higher acceleration levels than is possible with single-stage guns.    Double-stage 
helium,   steam guns are no longer- in general use,   because another technique for 
generating reservoirs of very high efflux-velocity gas has proved itself considerably 
more effective. 

Piston-Compression Light-Gas Guns 

Piston-powered light-gas guns utilize the rapid compression of a volume 
of low-molecular-weight gas to produce a reservoir of high efflux-velocity gas at 
high pressure for projectile acceleration.    An initial volume of gas at relatively 
low density is held in ^ heavy-walled smooth tube sealed at one end by a movable 
piston and at the other by a quick-operring valve arrangement.     Beyond the valve 
is a projectile mounted in a launch tube.     Figure 2 shows the operation of one type 
of piston-powered gas gun (expendable-central-breech model).     Firing is initiated 
by igniting the propellaut,   wnu " icceierates the piston violently down the tube, 
compressing the     ''in g;     and increasing its temperature and pressure.    As a 
critical value of pressure is reached,   the cjuick-cpcning valve mechanism opens, 
and projectile acceleration begins.    Depending on ihc mode of operation being 
utilized,  the piston will either be slopped by the high gas pressure ahead of it at 
the time of projectile release or continue compression until it is later stopped 
either by higher gas pressure or impact into the transition section (each of these 
possibilities will be discussed in detail). 

In all types of piston-compression gas guns,   there need be no tradeoff 
between temperature and molecular weight,   as was the case in the helium-steam 
guns,   so that the driver-pas molecular weights can be kept to a minimum.    Also 
the maximum energy density m the gas is limited only by the structural strength 
of the containing hardware,   so that very high reservoir pressui es and temperatures 
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E 
SCHEMATIC  DIAGRAM OF  LIGHT-GAS GUN OPERATION 

Kiijuiü 2 

cap be achieved.     These twu effects combine to permit very high driver-gas 
efflux velocities to be developed.    Since pressures can become very large,   rela- 
tively short launch tubes are required to accelerate projectiles to near driver-gas 
efflux velocity.     Guns utilizing compression pistons presently are capable of 
achieving higher projectile velocities than any other type of gun for projectiles 
weighing less than 50Ü grams.     Pistonless guns are used most effectively at present 
for large size low-density projectiles.     Relatively high driver-gas pressures are 
used in the piston type guns and as a consequence projectile acceleration levels are 
generally higher than pistonless guns,    the smaller and more compact projectiles 
are more capable of withstanding the high acceleration forces of the piston type guns. 
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Modes of Operation 

Let us now consider in some detail the operations of gas guns.    Since the 
piston rapidly compresses the driver-gas,  the process can be considered, to a 
first approximation,  adiabatic,   so that the temperatures and pressures are gov- 
erned by the following relationship for the ideal gas case: 

P   =   PQ I  ^Q.1 ^ P   =   instantaneous gas pressure 
initial gas pressure 

p = 
lJo 
T 

= 

To 
V : 
Vo 
7 

= 

instantaneous gas temperature 
^ " ^ '"o =    initial gas temperature 

instantaneous gas volume 
initial gas volume 
ratio of specific heats 

Thus, halving the volume of a perfect monatomic driver-gas during a piston com- 
pression stroke increases its pressure by a factor of 3. 17 and its temperature 
by a factor of 1. 59. Since the temperature increases more slowly than the pres- 
sure, extreme compression ratios are required to develop the high gas tempera- 
tures needed for high efflux velocities. For this reason, many high-performance 
piston-rompressed-gas guns have very long compression tubes. 

The requirement for large gas-compression ratios can be greatly reduced 
through the use of supplementary gas-heating techniques.    The most widely used 
method to date consists of firing the piston into the driver-gas at speeds exceed- 
ing the local speed of sound in the gas,   thereby generating a shock wave near the 
face of the piston that leaves it as its velocity becomes subsonic (due both to its 
deceleration and the increased sound speed in the drivei^gas with compression). 
The shock wave will propagate in the compression tubg,   reflecting several times 
between the transition section and the piston during compression,   heating the gas 
with each transit.    Thus,   by use of piston-shock heating,   high driver-gas tempera- 
ture can be achieved with relatively short guns. 

Several alternative means of increasing driver-gas temperature exist. 
Various chemically active gas mixtures like the HoOrjHe mixture used in piston- 
less guns have been considered in detail for use in piston guns,   but none have pro- 
vided spectacular results thus far.    Another group of techniques which seem quite 
promising rely on preheating the driver-gas before firing to increase peak gas 
temperatures.    The adiabatic temperature relationship   T   =    T0(V0/V)     "1 shows 
that doubling the initial temperature will double all subsequent ones.     Thus,   heat- 
ing a reservoir of a gas gun to 3270C prior to firing will double its peak gas tem- 
peratures and increase its driver-gas efflux velocity by a factor of 1. 4*. 

The operation of piston-compression gas guns is also affected by the motion 
of the piston after projectile release.    In  the original light-gas gun developed at the 
New Mexico Institute of Mining and Technology,  efforts were made to impart enough 
kinetic energy to the piston so that it can compress the driver-gas to the exact pro- 
jectile release pressure.     The piston was then accelerated back down the compression 

See paper on 'Summary of NRL Hypervelocity Accelerator Development for 
Comprehensive Review of Such Techniques. 
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tube as the projectile was launched.     It was later found possible to increase the 
driver-gas peak temperature and pressure substantially by providing the piston 
with sufficient energy to continue compresjsion after projectile release and be 
slopped by the increased gas pressure later in the cycle.    Still higher driver- 
gas temperatures and pressures are available if the compression piston has 
enough energy to empty the gas reservoir completely at high speed and impact 
into the transition section.   All present high-performance light-gas guns are 
operated in one of the lalter two modes. 

Piston-Gas-Gun Classification 

During the past several years,  such a large number of piston gas guns 
have been built and successfully operated that it is virtually impossible to catalog 
them in a report of this scope.     Upon examination,   however,   all are found to be 
made up of combinations of a relatively small number of piston driver devices 
and transition sections between the compression and launch tubes.    Each of these 
will be discussed in turn.    Examples of most combinations are feasible and have 
been constructed. 

The simplest piston driver is shown in Figure 3A.    A case of solid pro- 
pellanl is ignited, and the resultant gas drives the piston oown the compression 
tube just as in a standard gun.     This type of driver has found particularly wide 
use,   since it can be simply modified from standard guns.     Piston velocities up 
to 2. 3 km/sec can be attained with powder guns,   so that both subsonic and low 
supersonic piston firings into helium or hydrogen are possible. 

Tne second driver (Figure 3B) is a one-stage pistonless gun of the type 
described above.    Such drivers can readily achieve '.i, ii km piston velocities 
and have the advantages of clean operation (steam and helium are the only re- 
action products). 

A modification of the helium-steam driver is shown in Figure iC.    Here 
pure helium is heated by a shock wave generated by the fast-burning powder, and 
is compressed by ihe advancing powder gas front.     This driver- has performance 
comparable with powder-gun drivers,   but peak pressures are considerably lower, 
so that, lighter construction is possible.     Powder-helium drivers are mainly used 
with larger gas guns at present. 

Figure 3D shows the basic Scheme of a three-stage piston-compression 
gas gun.     Here the projectile from the first gun serves as a piston for the second. 
Piston velocities up to 5 km/sec have be .n reached,   so that extreme driver-gas 
shock heating can be accomplished.    Guns of this form were among the first to 
develop projectile velocities as high as typical ICBM and satellite velocities, but 
their complicated nature has prevented their large-scale use. 

Three basic transition sections in general use today are shown in Figure 4. 
Figure 4A shows the expendable central-breech assembly,   consisting of an inde- 
pendent section containing the transition that connects the compression tube to the 
launch lubes.    This section is used with a gun in which the piston receives sufficient 
kinetic energy to complete the compression stroke at high speed and deform itself 
into the conical taper.     In this way pressures above 10    psi have been achieved and 
used to accelerate projectiles to above H.2 km/sec.    The expendable section is 



BALLISTIC ACCELERATORS 

LAUNCH   TUBE 
PRIMER 

POWDER CHAMBER 
MAX. PISTON VELOCITY 2.3 KM/SEC 

(Q)  POWDER GAS DRIVER 

H5.0..He 

\    „PISTON 
«Isssssi  

2« "2 

RESERVOIR 'DIAPHRAGM 
MAX. PISTON VELOCITY 3.6 KM/SEC 

(b) STEAM  HEATED HELIUM DRIVER 

RESERVOIR 

y 

V 
He 

r 
LAUNCH  TUBE 

FAST BURNING 
POWDER 

MAX. PISTON VELOCITY  3.6 KM/SEC 

(c)  POWDER  HEATED HELIUM DRIVER 

V „PISTON     2 
LIGHT GAS ^ 

PISTON DIAPHRAGM 

(d) GAS  GUN  DRIVER 

PRESENT GAS GUN PISTON DRIVERS 

Figure 3 



RALLISTIC ACCELERATORS 

VALVE ASSEMBLY 

(a) EXPENDABLE CENTRAL BREECH 

^^^ 

(b^    GAS   DYNAMIC THROAT  TRANSITION 

(c)    ACCELERATED  CHAMBER   CONFIGURATION 
(DEVELOPED AT  NASA   AMES  FACILITY) 

PRESENT GAS GUN  TRANSITION SECTIONS 

Figure 4 

10 



BALLISTIC ACCELERATORS 

deformed with each shot because of high driver-gas pressure and piston impact, 
so it must be discarded. 

Figure 4B shows a similar section with an aerodynamic throat transition 
that provides a minimum resistance to gas passage.    It is more efficient than the 
simple conical section of the expendable central-breech configuration,   but it is 
limited in peak gas pressure (and hence temperature) by the requirement that no 
large deformation occurs,   since the unit is not expendable.   Successful gun opera- 
tion using minimum-resistance throats at pressures up to 350 k psi has been 
carried out,   however;    guns using this type of transition are among those with the 
best performance of those presently in operation. 

Figure 4C shows the accelerated-breech-iransition concept that was first 
utilized at the Ames Research Center during the fall of 1960.    This transition is 
used with a piston of low mechanical strength that completes the compression 
stroke by extruding itself into the very low-angle conicaj. transition.    In this way 
all of the chamber volume is displaced at high speed, and peak prensure is rnaint,- 
tained on the base of the projectile for a relatively long time.    When peak gas 
pressures are limited to 350 k psi,   and if the piston is made from a very soft 
material (polyethylene),   nonexpendable transition section designs become feasible. 
Guns utilizing this design have successfully launched 0. 22-inch-diameter, 0. 1- 
gram pla^lic pellets at 10 km/sec and 1 / 8-inch-diameter saboted glass balls at 
7. (i km /sec. 

Present Gas Guns 

Table 2 is a representative list of the high performance gas guns presently 
in operation.    They have been classified according to their piston drivers and 
transition sections,   as described above.     Each gun has a spectrum of maximum 
velocities   for the various projectile weights it fires.     In almost all cases the maxi- 
mum velocity achieved, regardless of projectile mass,   was reported.    This list 
generally represents the maximum present capability of light gas-gun accelerators, 
although some particular mass-velocity records may not be represented.     All of 
the guns listed are in a developed state and are available as research tools 

EXPLOSIVE ACCELERATORS 

Present explosive-accelerator techniques are capable of firing pellets at 
velocities higher than any other projector techniques,    üiher characteristics that 
are responsible for their widespread use arc their relatively low cost,   and the 
small amount of assembly effort required for many firing configurations.    ■ 

Since peak accelerations imparted to pellets by explosive accelerators 
generally are several orders of magnitude higher than those encountered during 
gas-gun launches,   the selection of pellet shapes tiiat can be fired at nypcrvelocities 
is severally limited, and in-flight pellet mass must be determined after' firing, 
since considerable pellet mass is generally losi during launch.     The blast effects 
generated by detonating explosive charges require the use of special firing facilities, 
and often semi-expendable range facilities must be used if controlled atmospheric 
firings arc to be made. 

11 
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Explosive Accelerator Operation 

Before discussing the operation of particular accelerator configurations 
in 'ietail,   let us consider some basic characteristics of explosive detonations. 
Detonation is set apart from rapid burning or deflagration by the fact that the 
chemical reaction propagates through the fuel material along a shock front instead; 
of a .hermal one.     If a long rod of explosive is detonated at one end, the reaction 
or detonation,   front will propagate down the rod at a velocity that is controlled 
by the dilatational wave velocity in the explosive rod and the pressure differential 
across the reaction front,   just as in the case of a shock tube.     As the front pro- 
gresses, the pressure differential will increase (and hence the detonation front's 
velocity) until a maximum pressure is developed.    The front will then continue its 
advance through the unconsumed explosive at a constant velocity known as the 
"detonation velocity."   The detonation velocity and the peak pressure at the detona- 
tion front are determined by the chemical composition of the explosive.     Present 
explosives have detonation velocities ranging from 5 to 8 km/sec and peak pressures 
as high as two million atmospheres. 

The simplest technique for accelerating pellets to hypervelocities using 
explosives is shown in Figure 5A.    The flat end charge consists of a cylinder of 
explosive with a detonator assembly mounted at one end and a pellet at the other. 
The detonator assembly is designed to initiate a detonation front in the explosive 
which accelerates to the explosive's detonation velocity before reaching the front 
surface.    At the front surface,   the detonation pressure reacts on the pellet,   causing 
it to accelerate (peak accelerations above 10    g have been developed).    The final 
pellet velocity is dependent upon the explosive detonation velocity and the ratio of 
explosive mass per unit area behind the pellet to the mass per unit area of the 
pellet (the C/M ratio).     Pellet velocity raises approximately linearly with the C/M 
ratio at low velocities and asymptotes to a peak value as the C/M ratio becomes 
large.    Depending upon the explosive propenies,   peak projectile velocities achiev- 
able with this technique range up to 4. 5 km/sec.    Thus far only a few pellet shapes 
have been accelerated intact to these velocities,   because the high pressures ex- 
perienced during maximum velocity launch deform or shatter most configurations. 
Considerable effort has been expended in developing techniques for mounting pallets 
on the face of charges to prevent them from shattering during launch.    At present, 
pellets that can withstand high-velocity launches are limited to thin disks, often 
spaced away from the charge by a thin layer of buffering material,   and specially 
shaped fragments that are thicker in the center than at the edges.    Since the C/M 
ratio of these pellets is greater near their edges than at their center,   a velocity 
differential is generated across the pellet surface during launch that results in it 
being fuzed into a nearly spherical form.     At lower velocities a variety of geometric 
shape? have been successfully accelerated by flat end charges.    The pellets have 
bee:, either partially imbedded into the end of the charge,   placed directly on its sur- 
face,   or spaced away from its surface by a buffer layer. 

Higher peak pellet velocities have been achieved by a fundamental modifi- 
cation of a flat-end-charge configuration called the cavity charge (Fig.   5B).    The 
detonation wave propagates through the explosive as in the previous case,   until 
it reaches the base of the cavity.     Here,   a strong shock wave is produced that 
propagates forward through the cavity.     The detonation front continues forward 
through the walls of the now tubular charge at a velocity considerably higher than 
that of the shock wave and continuously generates another shock wave from the 
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inner side wall of tfie cavily that interacts with the original shock wave and pro- 
gressively compresses it.    As compression continues,   the peak pressure of the 
original shock wave increases,   thus increasing the impulse it can transfer to a 
pellet during acceleration.    Thus a conical volume is swept out by the shock wave 
generated at the rear surface as it progresses up the cavity (referred to as the 
Mach stem). 

In a practical cavity charge,   the depth-lo-diameter ratio of the cavity 
behind the pellet is adjusted to form a sufficient reduction in the original shock- 
wave area to increase the maximum pellet velocity considerably without genera- 
ting pressures high enough to shatter it.    Since the area of the pellet beyond the 
stem (near its outer edge) receives relatively little acceleration during launch, 
there is a tendency for this type of charge to punch out the center of the pellet 
when a high velocity launch is attempted.    This effect has been experimentally 
observed.    Within the past 18 months,   several techniques have been developed 
to place the entire pellet within the Mach stem and thereby eliminate the central- 
punchout tendency. 

Other hypervelocity explosive accelerators have been developed that differ 
from the two described above in that the accelerated pellet is generated during 
launch.    These are the liner charges.    Since the pellets accelerated by these 
charges are not at hand before firing,   the charge designer has only indirect con- 
trol over their in-flight mas;: and shape.     For many ballistic applications this 
disadvantage is more than compensated by the fact that these charge configurations 
are capable of accelerating pellets to maximum velocities above 20 krn/sec. 

When the conical liner charge (Fig.   5C) is initiated,   a detonation wave 
propagates forward through the explosive.    As it progresses,   it collapses the 
liner material onto the charge axis.    A visualization of the progressive collapse 
of the liner will show that the point of total liner collapse (the point where the 
material from the inside surface of the liner iias just reached the charge axis) 
will initially move forward at the velocity of the detonation wave in the explosive, 
but will rapidly decelerate as liner collapse continues because of the progressively 
longer distances individual liner segment must travel before reaching the charge 
axis. 

If the forward velocity of the liner collapse point is less than the dilatational 
wave velocity in the liner material, the hydrodynamu   theory of metal forming 
predicts that the liner material divides along a surface contained within the original 
liner shell.    The metal within this surface forms a jet that moves forward at twice 
the liner collapse point velocity, while the remainder of the liner material forms 
a rod (slug) which follows the jet. at low velocity.     The jet continues to be formed 
until the charge and liner are consumed at which point it severs itself from the 
slug and travels down its trajectory. 

Since the liner collapse point velocity and hence the instantaneous jet veloc- 
ity steadily reduces during the jet launch,   a velocity gradient is generated along 
the jet.     This gradient will cause the jet to first stretch and then progressively 
break up until the velocity gradient   across the individual fragments is reduced to 
the point where the internal strength of the material can hold them together.    The 
resulting train of pellets is highly advantageous from a weaponry standpoint but 
makes this type of charge difficult to use for exterior and terminal ballistic studies. 
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Type Gun Plalon 
Driver 

Adlabati Powder 
Compreealür 

ConBt.   VI. 2^ cc arc 
Electric heated 

chamber 
Piston  Gaa Powder 

Plflton Steam 
Shock heated 

He 
2-3/V' dla. 

Piaton Oat Powder 

Piatun 
Shoclt 

Shock 
Ccmpre» 

Double 
Stage 
Steam 

Sln&le 
stage 
Steam 

Powder 
heated 

He-4.25"dla 
Powder 
heated 
He 

dla. 
dla 

75 cal 
(30") 

Table 2;   Freaent High Performance Light-Gas Guns 

Transition 
Section 

Accelerated 
chamber 
deal pi 

Aerodynamic 
throat 

Expendable 
tapered 
throat 

Aerodynamic 
throat 

Expendable 
tapered 
throat, 

Aerodynamic 
thruat 

Aerodynamic 
throat 

Comp 
T-Jbe 

Aerodynaj 
throat 

Aerodynamic 
throat 

UO ns dla 
Ifb cal 

(22 ft) 

l+O ion 
80 cal 
(10.^  ft) 

UO rm dla 
77 cal 
(10.5  ft) 

UO nn .60  cal 
77 cal 100 cal 
(10.5  ft)   I   (5 ft) 

launch 
Tube 

Projectile 

.22 cal 
218 cal 

[k ft) 

.22 cal 
136 cal 
2.5 ft 
.22 cal 
109 cal 
(2 ft) 

.50 cal 
200 cal 
(6.33 ft) 

2.25" dla. 
6k  cal 
(12 ft) 
5 In. 
72 cal 
(30 ft) 

2 in. 
(6 cal 
(13 ft) 

20   BD 
250 cal 

(16 ft) 
2 In. 
197 cal 
(33 n.) 

20 >an 
200 cal 

(13 ft) 

10  In.dla. 
B.U cal I80 < 
(7 ft) j   (60 ft) 

Maas 
(gram-i) 

"TTT 

500 
900 

Mux 
Velocity 
(km/aec) 

10 

5.6 

8.85 

7.6 

6.7 

k,0 
3-35 

Inatallation 

NASA (Aaes 
At- ro.   Lab ) 

AVCO Res. 
Ub. 

AEDC 
(Tullahooft) 

NASA (Amea 
Aero.Lab) 

Subaonlc 
piston.   (High 
ProJ. Acceler- 
ation) . 

Either super- 
sonic or aub- 
acnlc piaton. 
(Ver> high 
proj. accel- 
eration. 
Sapersonic 
piston.     High 
proj. accel- 
eration. 
Either  super- 
sonic or suD- 
sonlc  piston. 
Very high 
Acceleration 
Supersonic 
piston (high 
proj.  accel.) 
Supersonic 
piston.    Med. 
proj.  accel. 

This gun is 
no lon^r In 
uae .  I/JW Proj . 
acceleration. 
Low Proj. 
acceleration 
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A technique pi  ■senlly in use at the Aerojet General Corporation,  Downey, 
California,   largely eliminates this rlifficulty by detonating the conical liner charge 
off center.    The resulting riunsymmetrical detonation front causes a skewed collapse 
of the liner resulting in the various jet segments traveling in slightly different 
directions.    In this way,   the craters from the various jet fragments can be separated 
on a target for individual study. 

A different phenomenon occurs when the liner collapse point velocity exceeds 
the dilatational wave velocity in the liner material.     It is experimentally observed 
that no jet is formed,   but that a cloud of hypervelocity particles varying in size up 
to several metallic grain volumes is fired along the charge axis.     The mechanism 
responsible for the production of this  particle cloud is not yet fully understood,   but 
charges of this form are being used extensively for studies of micrometeroid im- 
pacts.     (See BRL paper presented in this session. ) 

A more complete discussion of liner explosive charges is presented in a 
classified addendum to this paper. 

Another group of accelerators are essentially explosively powered gas guns. 
One configuration developed at BRL consists of a thin-walled chamber containing 
hydrogen gas that is surrounded by an explosive charge.    The chamber is connected 
to a launch tube with a projectile mounted at its base.     Upon detonation of the explo- 
sive,   the chamber walls are collapsed,   thereby compressing the hydrogen gas and 
shock heating it.    The high temperature and pressure driver-gas then expands down 
the launch tube accelerating the projectile.    Such guns have accelerated gram, mass 
low density projectiles to peak velocities of 6. 0 km/sec,   but appear to be limited 
in maximum performance by high acceleration levels,  and   limited launch tube 
lengths.     If the launch tube is made too long,   a strong compression wave that is 
generated in the barrel during the explosive detonation will overtake the projectile 
and shatter it. 

A similar gun has been developed at the General Electric Company (MSVU). 
In this gun,   the explosive charge is used to supply both the motivating power and 
the driver-gas.    A thick-walled lead cap is partially filled with explosive, and 
sealed at the open end with a launch tube and projectile.     Upon detonation, the ex- 
plosive charge shock heats and compresses the air in the remainder of the cavity 
which initiates projectile motion.     The advancing explosive gas front continues com- 
pression during the remainder of the projectile acceleration.    Such guns have 
achieved similar projectile velocities to the hydrogen = explosive guns,   and have 
similar limitations. 

Both of these configurations are totally expendable due to the blast effects 
of their explosive charges, but they are inherently very inexpensive. Therefore, 
they have found wide use for gathering ballistic data. 

Present High-Performance Explosive Accelerators 

Table 3 shows a representative list of the explosive accelerators that 
together represent the maximum performance that has been achieved to date with 
explosive techniques.    All the macroparticle explosive accelerators described in 
this presentation can be enlarged to accelerate higher mass pellets with a mini- 
mum of engineering difficulty.     Therefore,   the maximum masses of macropellets 
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presemed in Table 3 represent the peak values that-have been accelerated to 
date,   but they do not represent maximum capability. 

SPECIAL ACCELERATOR TECHNIQUES 

The majority of ballistic research is being carried out at this time with 
the various gas-gun and explosive ballistic accelerators described above.     How- 
ever,   there are a number of other accelerator techniques that have been developed 
which are especially useful for a series of specialized ballistic- applications. 

Electrostatic Accelerator 

A technique shown schematically in Figure (i has been developed at STL 
where individual or small  numbers of very lightweight particles are charged to a 
high positive potential and injected into an electrostatic field (with potential dif- 
ferences up to 2 x 10    volts).     They are accelerated by the field  and allowed to 
impact into a target.    For reasons to be discussed in the STL paper presented in 
this session,   the technique is limited to very light particles,   but velocities above 
2Ü km/sec are possible.    Since single particles whose composition,   mass,   and 
velocity are measured can be identified,   this technique is highly useful for precise 
studies of micrometeoroid impact effects. 

Drag Accelerator 

Another' electrically powered ballistic accelerator useful for micrometeoroid 
studies has been designed by North American Aviation,   Inc.    (Fig.   6).     In this  case, 
a thick wire of low-molecular-weight metal  (lithium) is vaporized by the discharge 
of a capacitor bank through it.     The rapidly generated vapor is electrically pulse- 
heated to temperatures above  12,0U0oK and allowed to expand into an aerodynamic 
throat,   where it encounters several suspended particles.     If the density of the 
particle material is near that of the expanding gas,   the particles can be accelerated 
to near the gas-flow velocity in very short distances.    Using this technique,   NAA 
personnel have accelerated single 0. 1-min diameter glass spheres  to peak veloc- 
ities  of 9. 5  km /see. 

Constant-Chamber- Volume Electric Gun 

The constant-chamber-volume electric gun system (Fig.   7) consists of a 
chamber filled with low-molecular-weight gas that is pulse heated to peak tempera- 
tures above  12,000    K by a capacitor-bank-powered arc discharge.     The high- 
temperature and high-pressure gas then  accelerates a projectile down a launch 
lube,   as in the case of a gas gun.     Although the potential velocity capability of such 
guns is very high,   peak velocities with 0. 1-gram and 0. 2-gram 0. 22-inch-diamelcr 
pellets  have been  limited  to ä. B km/sec.      The practical problems associated with 
this type of gun will be discussed in the NRL paper presented in this session. 

Secondary Particle Accelerator 

It has been noticed that a spray of fine particles is ejected parallel  to a 
target when it, is struck by a projectile (Fig. 7).     Partial theories of their formation 
have indicated that peak velocities of the smallest of these could achieve two times 
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the primary projectile velocity.     Thus,   ii a 20-km/sec jet pellet is used for the 
primary projectile,   40-km/sec secondary particles might result.     Thus far, work 
has progressed on this technique only to the [joint at which the existence of such 
particles has been verified.     The experimental difficulties associated with using 
them will be great,   however',   because their number- per primary impact is large, 
and their velocity distribution is great.    Should 40-km/sec velocities be realized, 
however,   they will be of great utility for micrometeoroidal studies. 

Plasma Plate Accelerator 

A technique (Kig.   7) has been developed at the Pulse Power Laboratory 
(AFSWC) for electrically accelerating thin plastic sheets to peak velocities of 
5. 5 km/sec using the heated vapor- of a piece of electrically exploded aluminum 
foil.    The acceleration is sufficiently even to prevent significant tipping of the 
plastic sheet over short distances of its travel.    Also,   total energy transfer effi- 
ciencies between the electrical energy stored in a capacitor bank and the kinetic 
energy of the piastre can approach 50 percent.     Thus the possibility exists of using 
such techniques for accelerating large distributed mass fragments. 

CONCLUSIONS 

In the course of this presentation, each of the major types of acceleration 
lias been discussed.     In general, present gas guns can fire large instrumented 
models to 4. G km/sec,   homogeneous models with a variety of shapes to 7. 5 km/sec, 
and small piastre- cylinder's to 10 km/sec.    Gas guns are most useful when accurate 
control of model flight parameters such as dimensions,   weight,   velocity,   etc. ,   is 
required and relatively slow firing rates can be tolerated. 

Explosive accelerators are of limited uselulness where precise model 
parameter control aird measurement are needed,   but they are comparatively in- 
expensive to pur-chase and require relatively low-cost firing facilities.     They 
can be used to acquire large amounts of data at a rapid rate,   thereby making 
statistical treatment of ballistic data feasible.    Since explosive-accelerator sizes 
can be scaled,   projectile mass and size can be conventiently varied over a wide 
range.     Al present,   explosives provide the only techniques for- acceleration of 
macroprojectiles above 10 km/sec 

Several other ballistic- accelerator techniques have been developed for 
specialized research tasks.    They have been particularly successful in launching 
simulated micrometeroids for' individual impact studies. 

ACKNOWLEDGMENTS 

The very wide range of information presented in Uns paper would have 
been almost impossible to gather without the close cooperation of personnel from 
the following organizations. 

Ballistics Research Laboratory, 
Aberdeen, Maryland 

21 



HAI,LISTIG ACCELERATORS 

II. S.   Naval Ordnance Laboratory, 
White Oak,   Maryland 

National Aeronautics and Space Administration 
Ames Research Center', 
Moffett Field,  California 

Air Force Special Weapons Center 
Pulse Power Laboratory, 
Kirtland Air' Force Base,   New Mexico 

North American Aviation,   Inc. 
Aero-Space Laboratories, 
Downey,   California 

General Motors Corpor-ation 
Defense Systems Laboratories, 
Santa Barbara,  California 

Utah Research and Development Company, 
Sail Lake Gity,   Utah 

It should be emphasized that information from many other organizations 
was used in compiling this paper',   and that the cooperation of their personnel 
has been most appreciated. 

22 



SUMMARY OF NRL HYPERVELOCITY ACCELERATOR DEVELOPMENT 

C.   U.   Porter,   H.   F.   Swift,   and R.   H.   Fuller 

Naval Research Laboratory 
Washington,  D.   C. 

INTRODUCTION 

The U. S.   Naval Research Laboratory is engaged in a continuing effort to 
develop high-performance gas-powered accelerators for ballistic research studies. 
Present NRL light-gas guns are capable of accelerating saboted projectiles with 
an in-gun weight of 4 to 5 grams to 6 km/sec (shear-type projectiles having a mass 
of 0. 2 gram have been accelerated to 8. 5 km/sec).     Continued research is necessary 
in order to produce velocities in excess of li km/sec with sufficiently low pressure 
and acceleration to avoid breakup of fragile saboted packages.     Hypervelocity 
saboting has  required a complementary program in the development of small quick- 
opening valves. 

Larger guns wrth improved designs are currently under development for' 
substantially increasing the mass and velocity capabilities over' that of previous 
guns.     One of the most serious limitations on gun performance has been low driver- 
gas temperature.     Substantial progress has been made toward developing techniques 
for raising this temperature by adding electrical energy to the driver-gas.    To 
speed this progress,   a program utilizing the NRL-Narec high-speed digital com- 
puter has been formulated,   and computation« have been carried out to predict re- 
sults for a wide variety of gun parameters with about 95-percent accuracy. 

COMPUlER STUDY 

Figure 1 is a drawing of the NRL light-gas gun,   with symbols and defini- 
tions used in the theoretical analysis of the gun.    The theoretical treatment of gun 
operation is conducted by numerical solution of the basic equations of motion of 
the piston and projectile  under assumed equilibrium conditions of the driver-gas 
(Fig.   2).     Real gas is simulated with the use of Van Der Waals' equations of state 
and of adiabatic volume change.     Terms are included to account for the blackbody 
radiation from the driver-gas to the bore enclosure,   the reduced pressure at the 
projectile base caused by Mach-number effects of the fast-moving projectile,   and 
the reduced acceleration caused by bore friction.    This form contains M, ,   M9, 
A^,   and A2,   all of which apply   only to one specific size of gun.     If in the basic- 
equation substitution is made of the generalized parameters shown in Figure 3, 
a general dimensionless form will be obtained.     The results will depend only on 
the parameters used and will be valid for any size gun. 
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Figure ! 
Symbols Specific Gun Parameters and Conditions 

Mi Projectile mass 

n Diameter of launch tube 

\ Launch tube area (cross section) 

L Launch tube length 

w Velocity of projectile 

y Projectile distance from start 

H2 Piston mass 

D Diameter of Compression Tube 

A Compression tube area (cross section) 

L3 Compression tube length (efiective piston travel) 

u( Velocity of piston fired in vacuum 
(from open ended compression tube, free flight) 

p Driver gas pressure (function of T) 

U COMPRESSION TUBE LENGTH  Lj ** 

'-PROPELLANT 

PISTON VELOCITY, M PROJECTILE   VELOCITY,« 
PROJECTILE  MASS, M, 

R (acceleration of gravity) 

T Driver Gas Temperature (function of T) 

Tb Driver gas Temperature Characteristics at Projectile Base 
Established at maximum temperature (subject to radiation losses) 

u Piston velocity 

x Effective piston distance from boundary of travel 

t Time from projectile start 

Driver Gas Constants 

K Universal Gas constant/molecular wt. 

y Cp Cv' rat'0 0f specific heats 

C Specific heat at constant volume 

(i j Van der Waals constant of interaction (dimensionless form) 

l.j Van der ^Vaals constant of molecular volume (dimensionless form) 

Initial Conditions 

i Initial temperature of compression and launch tube 

To Initial average temperature of driver gas at start of compression 

d Initial loading pressure of driver gas 
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Fiiure 2 

Baiic Equations to be Solved 

(fv  refcrt tu i'th it«p    \ 
Iterative For» J i 

[ j reTeri to prcceeHinf itepl 

T. _ T  RA,., * A, yt)-b,vV-' 

...i^a^)-.,.] 

,., (^)" 

«DC, 

(A,  S   ♦ A^,)  -b,  Vo «U S  ♦   A,  v( 

r Equation relating piiton Newtonian 
fl) J  dynaaiie forces to pressure on the  faces 

^ P.  = Propellant  gas pressure 

F|,F3 = Respective averagr   friction  force 
in  launch and  compression  tubes 

at - at^ = At. vi 

(2) 

{Equation relating projectile Newtonia 
dynamic forces to driver gas pressure 
vith a Mach Number, K.   correction 

,-,.   f Equation  relating  t 
\ adiabatic volume  ch 

ewperature  to 
change 

f Equation  relating teapcrature  loss   in 
driver  gas to black-body heat   loss  to walls 
MQ = Mass of driver Rat 
S = Surface enclosing the driver gas 
(7 = Body radiation per unit of  surface 

(5)   ( Driver  gas  tcaiperature correction 

Van der faals Equation of State  for 
Driver Gas  (dimenaionless coefficient   forir) 
Tv  = Std.   V-n der  faal   tea^ierature- 

0* centigrade 
P#  = Std.   Atmospheric pressure 

i P. 
V.  = A, L, 

(«) •< 

T. d 

-,.   i  Zifuation relating propellant  gas pressure, 
\ P  .   to  free-firini iBUfllf pressure,   PB 

Figure 4 is a typical generalized output of one of these runs,  showing 
respectively the line number,   the dimensionless piston position (X),  the piston 
velocity (u),  the light-gas pressure (!J),   the scaled time (tau),  the light-gas tem- 
perature ('!'),   the dimensionless projectile position (Y),  and the projectile veloc- 
ity (VV).    These outputs art' all in decimal floating-point formal.    Figure 5 shows 
the independent variable,   tau,   and the lime-dependent curves of the other pro- 
gram outputs for helium driver-gas under the list of conditions shown in the fig- 
ure.    On the left side is shown the projectile velocity   W,    which reaches almost 
17,000 ft/sec,   or 5. 1  km/sec,   the driver-gas pressure,   and the driver-gas tem- 
perature.    At the right of the figure the piston velocity (u),   the dimensionless 
piston position (X),   and the dimensionless projet tile position (Y)   are shown. 
This may be compared with Figure !>,   which shows the same set of conditions of 
piston energy and piston weight for hydrogen at an initial temperature of 300° K. 
It is noted that the hydrogen reaches a considerably higher maximum driver-gas 
pressure,   but for a shorter time.    The projectile velocity is about 10 percent 
higher.     Figure 7 is presented to show how an elevated initial temperature 
(1200   K) with helium gas raises the  maximum projectile velocity ;o 24,200 
ft/sec (7.4 km/sec),   compared with 5. 1 km/sec attained at 300° K.     This value 
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Figure 3 
GENERAUZED GUN PARAMETERS (Definitions) 

Piston energy per cube of compression tube diameter 

Piston mass per cube of compression tube diameter 

Shot start pressure 

Dimeasionless compression tube length 

Charoberage Area ratio 

Dimensionless launch tube length 

Projectile mass per cube of launch tube diarater 

Average launch tube friction per cross sectional area 

Average compression tube friction per cross sectional area 

GENERALIZED OUTPUTS 

X x L, Dimensionless piston position 

Y y/^2 Dimensionless projectile position 

T t  L Scaled time 

is only slightly below the velocity of 7. 5 km/set- attained with hydrogen initially 
at 1200° K.    At higher initial driver-gas temperatures,   helium outperformed 
hydrogen,   at a much lower maximum pressure.     For this reason much of the 
latter theoretical work was carried on with helium as the driver pas. 

ISOMETRIC PARAMETER STUDY 

Over 4ÜÜ Narec  runs were  made,   and the envelopes of maximum veloc- 
ity are presented in isometric form.     Values for Figure 8 were computed with 
an   E    value of 7,202 joules per cubic centimeter    (1E(,),   a piston weight param- 
eter   b   of 7. 5 grains per cubic centimeter,   a shot-start pressure of 9, 50Ü at- 
mospheres,   and a  loading pressure of If!. Si atmospheres.     Tile surface is gener 
ated by a series of characteristic: velocity-temperature curves,   each represent- 
ing a successively lighter projectile where the   j   value decreases from   j0   to 
one-eighth of   j0.     All the generating curves plunge steeply to zero at absolute 
0° because of an infinite Mach number at this temperature.     It is very difficult 
to read values where the top of the surface is obscured as the curves start 
their steep descent. 

TEMPERATURE-MASS STUDY 

In Figure 9 the axial direction of the temperature variation was reversed 
to  .give a mure readable picture of the surface in a  left-hand-axis presentation. 
All lines under the velocity surface are dolled.    The upper tip of the surface,   as 
outlined by thin-line projections of the grid lines on the velocity surface,   shows 
velocities above  12. 19 km/sec (heavy contour line) between the temperatures of 
2,778° and 2,222    K and between the    j    values of a quarter and one-eighth of   j0, 
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t- tgure 4 
NAREC OUTPUT 

UINt 
JMBER "'i 

A 

0000 .»2034 • 00 
0001 • «MM • 00 
UOOA •2347J • 00 
0003 »li31I • 00 
0004 •101«1 • 00 
0009 •77»»1 -01 
000« ♦77004 -01 
0007 .7002» -01 
000» •«3<»l -01 
000« ♦ 58021 -Ol 
0010 •5032« -Ol 
0011 •43954 -01 
0012 •37817 -01 
0013 •31972 -01 
001« •28411 -01 
0015 •21157 -01 
0016 •18214 -01 
oon •115(0 -01 
0018 •72438 -02 
0019 •31903 -02 
0020 -13984 -»■s 
0021 0 Jl 
0022 •0 1 
00-^3 0 
0024 •0 -01 
002 5 0 -01 
002« •0 -01 
0027 •0 -01 
0028 •0 -01 
002« -21919 •07 

y/l, 

t  
•88344 • 03 
•28907 •04 
•31184 • 04 
•3018« •04 
•29848 • 04 
•28757 •04 
•28738 • 04 
•28298 •04 
•2773« •04 
•27C50 •04 
•28235 •04 
•23295 •04 
• 24240 04 
•23091 -04 
•31872 •04 
•20817 04 
•193S8 ■04 
■1(127 •04 
•18949 •04 
15843 04 

•14944 ■04 
0 -01 

•0 -01 
0 -01 

•0 -01 
0 -01 
0 -01 
0 -01 

•0 -01 
0 -01 

/  
•95728 

 \ 
•05 •91(91 

~v     r 
-04 57120 •03 •0 -Ol 0 -01 

•31(01 • 0« .302(1 -03 920(1 •03 •0 -01 0 -01 
•103(5 • 07 •378(3 -03 14(4« •04 0 -01       • 0 -01 
•33795 •07 •40282 -03 20501 • 04 • 0 -01 0 -01 
•55053 •07 •41973 -03 2(819 •04 •0 -Ol 0 -01 
•100(4 • 08 •42788 -03 38390 • 04 .7S1»9 -05 21((4 •03 
•1017« • 08 • 437N -«3 3(93( • 0« •7918« -05 21((« •09 
•12377 •0» •4304« -03        < 3973( •04 •49M5 -02 3(70« •0« 
•15235 • 08 •43293 -03 «2882 •04 •17»74 -01 70W« 04 
•18004 •08 •43540 -03 «3(23 • 04 •3((06 -01 9(979 •04 
•20754 •08 •437(8 -03 «(483 •04 ■(3139 -01 11930 05 
•23345 •08 ■44035 -03 90(09 •04 •«341« -01 1288« 05 
•25(10 • OS ■442(2 -03 5270« ■04 •12(9« •0« 13(93 05 
•27373 •08 < 44530 -03 94122 04 ■10393 ■oo 14854 ■09 
•2848k •08 •44777 -03 349(7 04 •20091 • 00 15228 ■05 
•28(81 •0« •45024 -03 5328« ■04 •23913 -00 15«53 05 
■28384 ■08 -43272 -03 55044 04 ■27(2« ■00 13«5( 05 
•27(32 08 ■43919 -03 ■54323 04 ■31799 -0« 1(17« 05 
•2«227 08 -457(« -03 33207 04 35820 00 1(333 05 
-24109 08 -4(013 -03 31794 04 39(7« 00 1(44« 05 
■228«7 08 ■48221 -03 90387 04 «3441 00 1(91( 05 
■22504 08 ■4(229 -03 ■900(7 04 43579 00 1(520 05 
■17942 08 4(454 -03 ■49797 04 4729» 00 1(5(3 05 
14305 0« 4(711 -03 41819 04 51582 00 1(5(0 05 
U 40« ■08 4700« -03 3(219 04 5844« 00 1(574 03 
90040 07 47344 -03 34929 04 »204( 00 1(548 ■05 
72510 07 47732 -03 31922 04 884(7 00 1849« 05 
57(17 07 4(179 -03 29174 04 75823 00 10424 05 

•48102 07 48894 -03 2«««3 C4 84254 00 1(329 05 
0 -01 0 -01 0 -01 0 -01 264 
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7500 

SCALED   TIME FROM   PROJECTILE   START, T(^.»ec/ft) 

Fig. 5  - Gun action with helium driver gas at 300oK 
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Fig. 6 - Gun action with hydrogen driver gas at 300oK 
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f 26JD00 — 
K 24,000 — 
w 
522,000 — 

SCALED   TIME FROM   PROJECTILE   START, T(/xsecA1) 

Fig. 7 - Gun action with helium driver gas at 1200oK 
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* AXIS 

(KM^,,;)   91, 

OENERALIZEO UiMtNSlONLtSS   RATIO 
SYMBOL UNLESS UHU S GIVEN 

c S.'.i^ (ATM) 

d 18 92   (ATMI 

m • 78* 
(KM/nd ! 767 

ü 300 TO 2.778   CK) 

!•£, 7.202   (WULES/em>| 

b 75   (gmAm9} 

J (i TO 1 )   226  (gnutm»! 

—*— GRID I.INES 

lS    VELOCITY CONTOUR 

 ISOBARS   P,-34.014   ATH 

Pi- 68027    ' 

Fig. 8 - VmriAtion of velocity w with driver gas temperaiure T# 
and projectile man  J (rt hand axis) 

which represent very li^ht projectiles.     Successive curved lines extended to the 
velocity scale show the other heavy-lme velocity contours of 10. 67,   9. 14,   and 
7. 92 km/sec:.     Isobar   P,   (broken heavy lines) shows that between the quarter and 
one-eighth   j0 value the pressure is about 34,000 atmospheres.     Along the one- 
half      j0    value  is a  line showing the isobar    iJ2    representing conditions with 
68,000 atmospheres maximum pressure.     It can be seen that the increases in 
velocity with temperature are not nearly as pronounced with the heavier projec- 
tiles  (larger   j    values).     In agreement with experimental observations,   the 
curve at 300° K shows an optimum velocity at a   j    value between the one-half 
and three-quarters   iu.     With increasing temperatures the projections of the grid 
curves parallel to the   j   axis change gradually from convex up to concave up. 
This means that with increasing temperatures lightening of the projectile will 
result m a higher rate of velocity increase. 

h !■ KKCT OK LOADING PRESSURE 

In Figure  10 the only parameter changed was the loading pressure,   which 
was  raised to 28. 6 atmospheres.     In this case,   above the 12. 19-km/sec contour 
the projectile velocity surface is slightly smaller than that shown in Figure 9. 
There is a significantly wider region to the right of the    Pj    isobar,   ranging 
between one-half   ju   to one-quarter   jo,   where maximum pressures are below 
34,000 atmospheres.     For almost all of the velocity surface,   the pressure is less 
than 08,000 atmospheres.    At 300° K the velocity is considerably less than in 
Figure 9. 
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MMERAUZED DuntHSIONliSS f<»TIO 
SYMeOL UNLESä W«TS OVEN 

c 9.5)7   UTHI 
1 IS 92    (ATM1 
• 78 9 
t 7S7 
T. 300 TO 2.778 l-K) 
E 7,20;    IJOULES/cm»! 
' 75 (gmtoi") 

J (1   TO I)   226 (grn/cm*!   AXIS 

 ■     GRID LINES 
 VELOCITY CONTOUR ""   ^1 ■>• 

 ISOBARS    P, • 34.013 ATMOSPICRES 
P, • 68.027 

Fig. 9 - Variation of velocity W with driver gas temperature, 
T    and projectile mass, J (left hand axis) 

Before passing on to the next, figure-,   11 i:i instructive to review some ol 
the conditions under which the isometric curves were generated.     First,   leakage 
past the piston or projectile was assumed to be zero.     Experiments with a Hridg- 
man seal and electrical instrumentation showed that gas leakage actually has 
considerable influence on projectile velocity.    The standard steel piston had up 
to Ifi. 7-percent loss in velocity over that obtainable with a piston with negligible 
leakage.    Another physical reality is projectile friction,   which seems to vary 
directly with pressure.    In research with Teflon and other plastics,   it was found 
that friction resistance (figured in terms of force per cross-sectional area) can 
with light projectiles be held to about 121  atmospheres.     Since interest is in ex- 
ploring the higher' velocity ranges,   this low value was chosen as a constant aver- 
age value and used in all studies in this scries.     Comparative runs exist in which 
it is necessary to correct by subtracting about 3 percent in Narec projectile 
velocity  for the heavy  (j  =  2.26) Teflon-coated cylindrical  projectiles and about 
B percent for the plain uncoated ones.     Also,   maximum proof-loading piston 
energy (£0) for- the 20-mm piston has been selected to get an idea of optimum 
performances.    Small variations In piston energy may also be treated as cor- 
rections to the oplimurn program.     In each of the experimental-versus-Narec 
comparisons appropriate adjustments have been made to obtain the Narec curve 
fitting experimental conditions as closely as possible. 

Experimental and theoretical studies have been made showing the effect 
of loading pressure on projectile velocity,  as shown in Figure 11.    At high 
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pressures the curves agree quite well,   but they depart at low loading pressures, 
where peak driver-gas pressure rises to above 66,680 atmospheres.    Visible 
gas leakage occurs around the two-piece catcher at pressures sligntly over 
34,000 atmospheres.    This is the most likely cause of the substantial variance 
between theory and observation.    The theoretical curve will also fall sharply as 
initial gas pressures are reduced further. 

No experimental data exist on the effect of loading pressure with gas at 
high initial temperature;    and since experimental high-temperature work is plan- 
ned,   a theoretical study was made as shown in Figure 12.    With heavier projectiles 
(j = 2.26),   optimum loading pressure is about 35 atmospheres,   while with very 
light projectiles the optimum loading pressure falls to about 19 atmospheres.     The 
peak driver-gas pressure over most of the surface as indicated by the Isobars   P,. 
Po   is under 34, 000 atmospheres. 

PISTON ENERGY  TEMPERATURE STUDY 

Figure  13 shows how velocity varies with   E0   values and temperature. 
There is considerable velocity surface above 24 km/sec.    This study was extended 
to consider ten times the standard proof-loading energy.    These energies are at- 
tainable experimentally by utilizing three-stage hypervelocity guns;    however, 
when one looks at the isobar contours ihe pressures are too high for practical con- 
siderations.    There is only a narrow region above one   'E0   value (72U2. 2 joules/ 

9.1« IMI^acI 

QOfKtUZiD OHENSONLESS RATIO 
SYMBOL U»£SS UMTS OIVtN 

9.537  «ni 
26«l    »TM 
7«« 
7.67 

T# 300 TO mt m MIS 
7.202   (JOULEStan'l 
7 5  (ii»*i»,l 
(1 TOO    226 IgmWl   AXIS 

^jurs 

Fig. 10 - Variation of velocity w with driver gas temperature T 
and projectile mass, j (higher loading pressure rf ) 
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— 

NAREC AND EXPERIMENTAL CONDITIONS             1 
c  •  4.768 ATM 
d  '   AXIS   ATM                                                             ! 
•   •  78-8 
t   •   7.67 
To»   300 »K 
E ■   5.402    JOULES/cm»                                        j 
b «   15     gm/ctn'                                                      i 
J   •   2-26   gm/cm5                                                        j 
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J 

NAREC   CURVE                                                             | 
EXPERIMENTAL CURVE  AND POINT                       j 

1                1 1 1                     1                    1                     1 

3 — 
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d    (ATMOSPHERES) 

60 70 80 

Fig.  11   -  The variation of projectile velocity, W, with initial driver gas preBBure, d 

cm'3) where peak driver-gas pressures are below 33,340 atmospheres.    There is 
a small region between 2 and 1-1/2   E0   where pressure is üü,680 atmospheres, 
and between 3 and 2. 5   K0   there is a region where pressure is below 132,360 at- 
mospheres.     Most of the experimental    work iias taken place at    E   values of three- 
quarters   E0.    At this energy the projectile velocities are about 4 percent below 
those with an   Eu value of one at an initial driver-gas temperature of 2, 'i70üK 
and about 5 percent below at 300° K.     In general there is considerable projectile- 
velocity gain with increasing piston energy,   but the pressures rise to values where 
gas-container surfaces distort and leakage is certain to occur. 

HEATEÜ DRIVER-GAS STUDY 

In Figure 14 the Narec curves were extrapolated using the method for 
generating Figure  13 to give temperature-velocity correlations for experimental 
piston energies and other conditions.    In the first experiment using steel pistons 
(lower experimental data points),   the higher initial driver-gas temperature    T0 

was attained by heating about 75 percent of the compression tube electrically. 
Experimental points are 2 percent higher than predicted where an experimentally 
determined value of 16 percent velocity reduction was allowed for steel piston» 
leakage.      The elevation in driver-gas temperature in the upper experimental dat? 
points was accomplished by raising the volume  ratio by a factor of 2. 09.     In the 
two experiments,   the data points lie close to the theoretical curves,   and the gains 
in velocity from driver-gas healing were as predicted. 
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CHAMBERAGE-AREA STUDY 

At NRL a projectile velocity of about 8. 1 km/sec has been reached v/ith a 
gun where the chamberage-area ratio   f   was about 52.    Narec solutions with the 
same experimental conditions gave about 1Ü. 7 km/sec and peak pressures of about 
181, 000 atmospheres. 

Figure  15 shows how velocity varies as a function of the log of this cham- 
berage-area ratio   f.     It is noted that velocities in excess of 24 km/sec are ob- 
tained in the upper- parts of the surface.    At high cliamberage-area ratios (above 
20) the pressure exceeds  133,000 atmospheres over- much of the velocity surface. 
These high pressures always cause considerable distortion at the entrance section 
of the launch tube,   forming a very small venturi which lowers the velocities con- 
siderably below those predicted.     The natural log of the f   value,   2.03,   represents 
a chamberage-area ratio of 7. G7,   which corresponds to a 20-mrn compression 
tube and a 30-cal launch tube.     The r-urves illustrate that a slight increase in 
chamberage-area ratio results in a considerable gain in projectile velocity and 
that gains as a result of high initial driver-gas temperature are independent of   f. 

PISTON ENERGY STUDY 

The study of the effect of piston energy   E   and chamberage ratio   f   aids in 

N1RCC   CONDITIONS 

GOCUUZED 
SYMBOL 

» 14   (KU^I 

OMCNSOWISS MIIO 
UNLESS UMTS GIVEN 

isjr i»Tm 
18.9 - K»  («TNI     »XIS 
re a 
767 
J«OC  I'KI 
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IS    («mWl 
(4  TO II   2 2« l«n/cii<>l 

J,- 2 26    (gmto'l 

76SI    1,1 
  GRID  LIICS 
     VELOCITY   C0NT01» 
 ISOBARS      P, • 17,007     ATMOSPHERES 

H- 54.01« 

Fig. 12 - Variation of projectile velocity, v, with gaa loading 
preaaure, «1, and projectile mass, J 
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556^ 
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E, -11187 oTU/n» 
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Fig. 13 - Variation of velocity » with driver gas temperature. 
T0   and piaton energy,   f. 

extrapulaliun of the Narc-c: study.    The theoretical curves of Figure 16 were 
developed for the experimental parameters where piston energy   E    was varied 
from 3/4   E0   to    1   E0   with a chamberage-area ratio of 7. 67.    The copper- 
piston data points fall on the curve,   while the steel-piston datum point is low, 
indicating the effect of leakage.     A piston energy of 2EU   was reached in a three- 
stage gun at a chamberage-area ratio of 5. (>2 in th«; upper datum point.    This re- 
presents a 20-mm,   35-cal combination in the final stages,   which is the most 
successful combination.     Pressures were too high to be contained when the 20- 
mm,   30-cal combination was used,    consequently projectile velocities were lower. 
The generality of the program is shown by the experimental datum point obtained 
with 1. 1-inch,   50-cal combination,   which is the closest low-pislon-energy experi- 
mental point available at NHL. 

PISTON AND PROJECTILE WEIGHT STUDY 

Figure  17 is a plot showing velocity variation versus piston and projectile 
weight parameters,    b   and    j.     Parameter   b   varies from 15 grams per cubic 
centimeter (b0) to 1/8 of that value,   and   j    varies from 2. 26 grams per cubic 
centimeter (j()) to 1 /8 of that value.     Velocity contours vary from 8. 38 to 6. 1 
km/sec.    The pressure isobars (Pj,   P2,   P3) show that if the   b   value is greater 
than 1/2 of   b0 and the   j    value is less than 1/2 of  j     peak pressures will be 
about 33,000 atmospheres. 
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EXPERIMENTAL  POINTS 
M|=0.92qm,   M2 = i40gm     (#4 COPPER PISTON) 
T0 ABOVE   300K  OBTAINED BY COMPRESSION 

NAREC CURVE  CORRECTED 
FOR   M,  = 0929m     J« 92J0 

E • 075Eo 

NAREC  CURVE 

STANDARD   TUBE 
CORRECTED FOR   STEEL PISTON 
LEAKAGE AND 0.75 E,, 

EXPERIMENTAL  POINTS 

40ijm M,  =   I  gm,    M 
TEMPERATURE   ABOVE 
ELECTRICAL   HEATING 

(STEEL PISTON) 
300"K  OBTAINED BY 

I Jo 

COMMON   CONDITIONS 

C  =   4,768    (ATM) 
d =   28,4      (ATM ) 

e  =   78 8 

f   =   767 
T, =  AXIS 

E   «   5,402   (JOULES/cms) 

b = 15  (gm/cm') 

JOG 200  300  400   500   600  700  800 
To CK) 

900  1000 

FIG. 14     THE VARIATION OF PROJECTILE VELOCITY, W, 
WITH DRIVER GAS  TEMPERATURE T0 

The two experimental points showing the effect of reducing piston weight 
by 10 percent (1-grain projectile fired from a 20-mm,   30-cal gun) are within 5 
percent of the theoretical values when proper allowances are made for experi 

and  LOW piston energy to match the experimental 
firing parameters.     The sa 
surface using the magnesiu 
piston (1) = 2 /7i)(,). 

_ when proper allowances are made for 
mentally determined friction and  low pist 

rig parameters.     The same is true for the interior datum point on the velocity 
• ■         ■      ■■■m 0.63-gram projectile (j = 0. 63j0) and the 40-gram 
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Figure 18 is a similar- plot,   with the; initial driver-gas temperature at 
2400° K,   where an appreciable part of the velocity surface is above 12.2 kilo- 
meters per second.    The velocities presented in these curves are much greater 
than those piesented in. previous curves for equivalent pressures. 

In both Figures  17 and 18.   as the weight of the projectile is reduced the 
piston weight must be reduced while holding the kinetic energy constant,   in order 
to achieve maximum velocity gains from a lightweight projectile.     In both figures 
the 68, OOO-atmosphere isobar almost bisects the surfaces diagonally. 

EFFECTS OF RADIATION ON PROJECTILE VELOCITY 

The Narec program offers an easy means of examining the theoretical 
gain from the elimination of hot-gas-radiation effects.     It is only necessary to 
zero the Stefan-Boltzman radiation coefficient and rerun the program.     Compari- 
son is then made between two identical  runs with zero and finite radiation con- 
stants.    This has been computed for several configurations using helium as the 
driver gas under the conditions shown in Figure 19.     Figure 20 shows four-run 
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Fig. 19 -  Projectile velocity percentage gain from zero radiation 

Figure 20 
Gain in NAREC Projectile Velocity for Elimination of 

Radiation Loss (T0 = 1200 K) 

Common Parameter Condition 
Av. Gain in Velocity (4 Runs) 

Av fps Av  fps 
(forHj (for H2) 

j      0.565 gm/cm3 (light projectile) 263 22 

2.26 gm/cm3 (heavy projectile) 241 5 

c      4,750 Atm. (shot-start press) 233 11 

9,500 Atm. (shot-start press) 270 16 

h     7.5 gm/cm3 (light piston) 232 8 

15 gm/cm3 (heavy piston) 272 19 

averages of projerUlt;-vcjUu-Uy gain listed with the eommon parameter.     Velocity 
gam from a zeroed radiation ronstant can also I»' interpreted m terms of percent- 
age of departure or velocity loss from a basic  logarithmic curve of velocity-gain 
percentage versus initial driver-gas temperature   T(l.      Tills loss increases ap- 
proximately as the third power of the initial absolute temperature of the driver 
gas. 
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Since Ihe basic percentage increase in projectile velocity increases only 
in a logarithmic fashion,   it is easy to conjecture thai at some temperature the 
percentage of velocity gain in the basic curve will be counterbalanced by percent- 
age of velocity losses from radiation effects.    At mis optimum initial-temperature 
point,   projectile-velocity losses may occur from further increase in initial gas 
temperature.     An experiment in which 6,000ÜK initial temperature could be reached 
by a combination of electrical and compressive heating may yield some information 
on this optimum temperature. 

HEAT ADLUTION DURING COMPRESSION 

Since the light-gas-gun piston starts slowly,   it appears that electrical 
heat added during the latter portion of the compressive cycle  may have consider- 
ably less heal less and thereby be more effective in raising the projectile velocity 
than oilier types of preliminary healing,     in this  lype of operation electrical energy 
may be added at low driver-gas density,   and the additional pressures required 
for effective acceleration can be achieved laier in the cycle by poston compression 
of the t;;-is-    Experimental investigation of these techniques will be carried out by 
using 20,00(3- and 1UÜ. Oüü-joule capacitors,   and the newly developed 250,000- 
joule capacitor banks presently under construction (Fig.   2 1).     Also shown is the 
gas gun which will be used fui   the initial electrocompression studies.    The gun 
consists of a 90-inch long,   JjT-mm compression lube fitted for 22-cal and 30-cal 
launch lubes.     Projectile  velocities of about 7. H km/sec have been achieved with 
this gun without the addition of electrical energy. 

Recent advances in switching techniques,   shown schematically in Figure 
22,   enable the 20,000-,   100,000-,   and 25Ü, Oüü-joule capacitor banks to be used 
in any desirable combination.     A total of IJ7Ü, Ü0Ü joules can be delivered in about 
six microseconds.     Maximum current is about  15 million amperes.    To handle 
this  large  current load,   extensive engineering was necessary to develop the  light- 
weight energy collector (Fig.   2'.i) which is designed for withstanding the enormous 
peak magnetic repulsive pressures generated by the peak current.     A cylindrical 
design was chosen in order to utilize the hoop strength of the cylindrical elements. 

Results of initial computations  from the Narec program show that velocity 
increases  ranging from '.'> to li km/see should be possible above maximum perform- 
ance of the gun with in< reased driver-gas temperatures from electrical-energy 
input.     As the computer program is further developed to handle the effects of heat 
input to the driver-gas during compression,   it will be used it) help establish de- 
sign and firing criteria for the electro-compression gun. 

CONSTANT-VOLUME ELECTRIC GUN 

The simplest type of electric gun is the constant-chamber-volume model, 
which is a chamber filled with low-molecular-weight gas.     Research is continuing, 
and Figure 24 shows a newly designed constant-volume gun.     This gun will bo used 
in further research to optimize the firing parameters and to obtain minimum con- 
tamination of the light  gas from  metallic vaporization.    Shown in this figure are 
the launch tube,   the projectile,   the ground electrode,   the gas-filling port,   electrical 
insulation,   and the high-voltage electrode.     During arc-discharge in this gun the 
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Fig. 2.Z -  Switching and distribution arrangement 

gas temperalaru is raised to about 1K,OUO"K.    After a thin diaphragm is ruptured, 
the heated gas accelerates a projectile down the launch lube.    Although this has 
proven possible with present equipment,   which is capable of generating gas tem- 
peratures in excess of 15, Ü0ÜÜ K,   the extreme electrical current required fur this 
heating vapoi i/.e.-> enouyh metal  from the electrode surfaces to contaminate the 
gas and seriously restrict gun performance to velocities below 4.6 km/sec.    Some 
of the  limitations  may be  reduced  in future studies. 

CONSIDERATION OK LARGE LIGHT (IAS GUNS 

At this time u  is well to consider the effect of the analysis.     It is clearly 
shown that, velocities in excess of 12 km/sec can be achieved with reasonable 
pressures,   provided  there   is sufficient  driver-gas  temperature and  the  projectile 
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weight parameter is lowered Ui 1 g/cm'   or below.    Tins can be achieved with 
lightweight sabot material,   provided peak aeeelerative pressures are kepi below 
34,0ÜU atmospheres.     To achieve low acceleration and a reasonable value of 
saboted projectile mass,   large guns become necessary. 

A much larger gun than the 4ü-mm and 3-inch tubes in current use at 
Mil. is approaching the assembly phase.    The gun (Figure 2;')) consists of standard 
8-inch guns smooth bored and mounted muzzle to muzzle on rail trucks to form 
a compression tube 57.5 feet long.    A pan- of 13-tnch smooth-bored guns are used 
for the 34-füot launch tube.    This gun has been designed to launch a 225-gram 
projectile  to speeds  up to  1). II km/see and  900  grams  to  (>. U km/sec. 

Since the central breech is so massive  C'a ions)  it  is infeasible to make il 
entirely expendable.     Therefore,   a partially expendable catcher lias been designed 
that, consists of a relatively linn steel  inner liner surrounded by a lead sheath 
which is held wi'hin a massive steel outer ring,   fabricated from the breech of a 
IG-inch naval gun.     During operation the inner core will be partially destroyed 
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Fig. 25 - Rail mounted 8 - 2.5 in. hyjx.-rvclnc.ty gun 

but the  lead will prevent damage U: the ouler ring,   and the Liner can be  replaced 
fur another shot. 

Boause of the  lar^e diameter of the pump and  Launch tubes,   maximum  gas 
•jressure  inusi be kept considerably bciuw values normally used in similar small 
guna to prevent permanent deformation from occurring.    An extremely impurtanl 
task for the Naree prugratn is to determine initial  firing parameters that will 
yield high-performance  i'-.suits with lower operating pressures. 

PISTON CONSIDERATIONS 

One source of Large deformations in the high-pressure section is an un- 
yielding piston.     Current, research is aimed at finding the best piston in certain 
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weight classes.    In the heavy- and medium-weight class,   copper and lead have 
performed well with low distortions'in the high-pressure sections.    In the light- 
weight class plastics and soft aluminum appear to be quite good. 

In several experiments,   in which piston weight was varied,   piston bounce 
occurred under the combination of parameters predicted in the Narec curves of 
Figure 26.     Parameter X,   representing piston position,   approaches a minimum 
value and then increases as the piston velocity    u    goes negative.     Figure 27 shows 
a copper piston with a Bridgman seal which has entered the conical portion of the 
high-pressure section,  as indicated by the while doited line,   and then has backed 

Figure 27.    Photograph of Piston-Bounce with  Seal Intact 

the  piston,   which are  used to form the seal,   were expanded back to the  full bore 
diameter in the final position.    Computer .studies show that the lime from the 
first conical-surface contact to its final contact with the Bridgman surface edge 
is about löü ii sec     The O-rings were not gummy and wore in perfect condition, 
which indicates a very effective  Bridgman seal throughout this piston motion. 

Oala points with the new piston agree closely with predicted Narec values, 
and velocity increases were achieved up tu 20 percent above  identical shots where 
standard steel pistons were used.     A  Bridgman seal only on the powder side of 
the piston yielded a (i-percent increase in projectile velocity;    the seal on the 
driver-gas side only yielded a  Ki-pcreent  increase over that of a standard steel 
piston. 
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PROJECTILE FRICTION 

A qualitative theory of bore friction has Deen developed that depends on 
the movement of dilatational waves in the Launch tube.    It has been used to explain 
many of the observed bore-friction phenomena,   such as: 

1. Moderate friction in the first few inches of projectile travel 
2. Steeply rising forces proportional to incident pressures and 

the dry coefficient of friction between the projectile material 
and the bore 

3. A rapid fall-off to almost fixed moderate values. 

Recently very successful high-velocity shots have been made with solid cylindrical 
projectiles where proper clearances were established behind the seal surfaces, to 
avoid postulated interference between the bore and projectile body. 

CONSIDERATION OF TERMINAL NEEDS 

In order to obtain meaningful terminal ballistic data utilizing the light-gas 
gun,   it is imperative that only the projectile impacts the target and that the mass 
of the projectile be accurately known.    Techniques have recently been developed 
utilizing the quick-opening valve to eliminate the shear disk required in the stand- 
ard gas-gun accelerator and to sabot projectiles to insure that no mass loss occurs 
during acceleration. 

In previous models of the light-gas gun it was necessary to use a disk 
between the propellanl gas and the projectile assembly.     This disk prevented 
expansion of the light gas into the launch tube until a desired pressure was reached. 
When the low-molecular-weight gas was compressed to a predetermined value, 
the disk would shear from its support,   and the disk and projectile assembly would 
then be accelerated down the launch tube.     Impact damage could and generally   was 
caused not only by the projectile but also by at least two fragments of sabot,   de- 
pendent upon design of the sabot and the shear disk.    Also,   because of the shear 
disk,   the total mass accelerated was unnecessarily high. 

QUICK-OPENING   VALVE 

Original work to eliminate the shear disk was done at NOL and resulted 
in the development of a high-pressure petal valve.    Independently,   Ames Aero- 
nautical Laboratory,   NASA,  developed a break-type valve.     The NRL gun utilizes 
ihe basic idea of this Ames device.     Quick-opening valves have been developed 
for the 22-,   30-,   and 60-cal launch tubes.     Figures 28 and 29 are diagrams of 
the same basic valve.     The opening action occurs when the lateral component of 
pressure acting on the notch or milled slot exceeds the tensile strength of the valve 
material.     The break,   or shot-start pressure,   is controlled by the shape and depth 
of the notch or slot.     Upon breaking,   the two sections of the valve are driven apart, 
strike the valve-holder surfaces located perpendicular to the direction of travel 
of the two valve sections,  and rebound into the closed position.     Because of the 
time required for closure of the steel valve in the 60-cal gun,   there is no detri- 
mental effect of closure on projectile velocity.     However,   the  valves developed 
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FIR. 28 - Quick Opening Valve 
40 mm-60 Caliber Light-Gas Gun 

for the 22    and 3ü-cal launch lubes are made of aluminum and travel a shorter 
distance before rebound occurs.     Hence,   closure occurs prior to the time that 
the projectile reaches the muzzle.    The resultant effect is a reduction in projectile 
velocity.    To pi event closure of the aluminum valve,  a small metal cone has been 
inserted into each end of the valve.    These expander-cones wedge into the valve 
sections upon striking the end of the valve holder.    This wedging action expands 
the valve end into slots in the walls of the holder and prevents rebound.    Trapped 
air,   which could have a cushioning effect and defeat the purpose of the device,   is 
removed by a simple venting arrangement.     Smaller vent holes may be used to 
control valve opening rate should this be necessary to limit accelerative forces in 
delicate projectiles. 

SABOT DESIGN 

The design of a sabot which is strong enough to withstand the extremely 
high acceleration forces of the launch phase and light enough so that the resultant 
projectile velocity is not drastically decreased is a problem which has plagued 
the terminal ballistician for years.    Various sabot configurations and materials 
have been tried,   with only minimum success.    Sabots previously used at NRL 
were made of cloth-impregnated bakelite and aluminum.    These were found to be 
unsatisfactory for tests involving high projectile density and high velocity.    Cur- 
rently sabots made of lithium-magnesium alloy (approximate density 1.46 g/cm ) 
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Fig. 29  - Quick Opening Valve 
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are being used with 3/8-inch-diameler aluminum spheres,   mass of 1. 25 grams. 
Adiagram of a sabot now being tested is shown in Figure 30.    The sabot is split 
for easier egress of the sphere,   and the four holes are included for the same 

0.086* DRILL (TYP) 

■45* 

MAT'L: LITHIUM-MAGNESIUM 

Fig. 30 - Sabot design for projecting 3/8 in. d. sphrrical metallic projectile« 
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reason.    With this sabot and a quick-opening valve assembly,  a maximum ter- 
minal velocity of 6. 0 km/sec was attained in a test environment of 10 mm mercury. 
There was no extraneous damage to the target face after firing.    The results from 
these tests are quite encouraging,  not only from the aspect of acquisition of accu- 
rate terminal ballistic data but also from the viewpoint that accelerator techniques 
have developed to the point at which a relatively large mass,  4. 10 grams (1. 27- 
gram projectile and 2. 83-grair. sabot),   has attained a velocity of G km/sec. 

SUMMATION 

Experimental work is continuing to increase mass,   size,   and velocity 
capabilities using saboted projectiles for impact research.     Use of isometric 
charts to interpolate Narec results to a new set of design parameters represent- 
ing a specific gun has resulted in about 95-percent agreement with experimental 
results.     Increased energy storage and distribution capabilities and development 
of electroballistic techniques will considerably extend the scope of electroballistics 
work. 
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INTERIOR BALLISTICS OF HYPERVELOCITY PROJECTORS 

INSTRUMENTED LIGHT GAS GUN AND TRAVELING CHARGE GUN 

P.   G.   Baer and H.   C.   Smith 

Ballistic Research Laboratories 
Aberdeen Proving Ground,   Maryland 

INTRODUCTION 

Fur the last two years the Interior Ballistics Laboratory has undertaken 
an investigation into the design of hypervelocity projectors.    This paper reports 
the progress of the Laboratory on two types of hypervelocity projectors;    namely, 
the two stage light gas gun and the traveling charge gun.    The investigation has 
been funded under two Ordnance Projects -  (1) Project:    TB~3-0116;    Task: Super- 
velocity Launchers,  and (2) Project:    TB5-22;    Task:   Supervelocity Ammunition. 

Light gas gun design has been investigated under two parallel subtasks: 

(1) The development of a mathematical model or models which,   when 
programmed on a digital computer,   will predict the performance 
of any two stage light gas gun regardless of its dimensions. 

(2) Experimental verification of the above theoretical computer model. 
A similar approach has been adopted for the traveling charge gun studies. 

The first report on the interior ballistics of light gas guns was presented 
at the 4th Symposium on Hypervelocity Impact'   .     This report presented a 
background to the interior ballistics of light gas guns.     In addition to the back- 
ground,   theoretical computations were presented for single and two stage light 
gas guns in order that the limitations of these guns might be fully understood. 
The desirability of confirming theoretical predictions with experimental results 
was stressed. 

The portion of this paper which applies to Light gas guns,   continues the 
investigation presented in the first report.    However,   investigation in this case 
is limited to the interior ballistics of two stage light gas guns,   emphasis being 
laid on agreement between predicted and experimental results. 

A report on the applicability of the traveling charge gun to hypervelocity 
projection was also presented at the 4th Symposium on Hypervelocity Impact"). 
Both experimental and theoretical work was discussed;    however,   ihe major 
emphasis in the traveling charge gun task was in the development of a propellant 
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which would burn at a certain prescribed rate. 

Since the initial traveling charge paper,   two BRL Technical Notes have 
been published on traveling charge gun design "), (4) in which a simple theoretical 
model of a traveling charge gun has been amplified into a system which can be 
used to examine the potentialities of any type of traveling gun device. 

The portion of this paper,  which applies to the traveling charge gun,   con- 
tinues the investigation presented in the first traveling charge gun report.    A 
more complex theoretical model will be discussed and experimental data pre - 
sented. 

THEORY 

A complete discussion of the mathematical models used in simulating the 
two stage light gas gun and the traveling charge gun on digital computers is out- 
side the scope of this paper.    Models for both guns will be  briefly described 
without using mathematical notation;    in addition,   some of the assumptions used 
in deriving the equation will be presented.    A more complete discussion of the 
mathematical models used to simulate the two stage light gas gun and the traveling 
charge gun together with computer flow diagrams will be reserved for subsequent 
BRL reports. 

Four mathematical models simulating the two stage light gas gun have 
been derived and programmed for the digital computer.    These theories are 
listed according to increasing complexity. 

(1) Charters' method 
(2) Simple Isentropic Compression method 
(3) Riohtmyer-Von Neumann "q" method 
(4) Method of Characteristics 

The four mathematical models used to simulate the two stage light gas 
gun have numerous assumptions.     In Table I the major assumptions used in 
these models are listed and compared. 

The simplest model which can be used to simulate me two stage light gas 
gun is the one developed by Dr.   Charters of Ames Laboratories.     The mathe- 
matical equations used in this model have been presented in the first report W. 
The method consists of a set of simultaneous equations (not differential equations) 
which can be solved numerically for any particular light gas gun case. 

In the simple isentropic compression method the mathematical equations 
used to simulate the two stage light gas gun are a set of simultaneous ordinary 
non-linear differential equations with time as the independent variable.    The 
equations are similar to those described in the first report "' (eq.   9 - 27);    how- 
ever,  some revisions have been inade in order to more accurately simulate the 
gun.     In order to obtain a solution to a particular two-stage light gas gun problem, 
these equations have to be integrated numerically from a time corresponding to 
ignition of the solid.propellant behind the piston to a time corresponding to ejection 
of the projectile from the barrel of the launcher tube.    The results from these 
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numerical integrations consist of a table in which the variables of interest (pres- 
sure,  displacement,   velocity,  etc. ) are given for even increments of time. 

The equations used in the Hichtmyer-Von Neumann "q" method are a set of 
simultaneous non-linear ordinary differential equations and partial differential 
equations of the hyperbolic type.    The partial differential equations used in this 
method have been described by Richmyer '  ';    these equations have been adapted 
by the authors so as to simulate the two stage light gas gun.    In this method,   time 
and a particle coordinate (or Langraman variable) are the independent variables. 
Numerical  integration of these equations gives the variables of interest as a func- 
tion of time and a mass segment number. 

The equations used in the method of characteristics are of the same type 
as in the "Richtmyer-VonNeumann "q" method. However,   the independent variables 
are a pair of "characteristic variables".    Numerical integration of these equations 
gives the variables of interest as a function of the two characteristic variables. 

Two mathematical models simulating the traveling charge gun have been 
developed.     In the simpler model it is assumed that: 

1. The thrust developed by the burning traveling charge propellant is 
a constant. 

2. The propellant burning  rate (and thus the mass loss) is a constant. 
3. The fnctional forces between the barrel and the projectile are 

negligible. 
4. The barrel ahead of the projectile is evacuated. 

The resulting differential equations can be integrated giving three simple 
simultaneous equations. Numerical solutions are obtained by substitution in the 
equations. 

A more complex model simulating the traveling charge gun has been devel- 
oped.    Originally,  this model was based on equations developed by Armour^' for 
predicting the interior ballistics of gun-fired rockets.    It was found,  however,  that 
these equations did not completely describe the interior ballistic behavior of a travel- 
ing charge gun,  so they were revised so as to more nearly correspond to the actual gun. 

The events which are simulated by this model are the following: 

1. Initially the propelling charge consists of a base charge,   composed of 
granulated solid propellant and an end burning traveling charge,  composed of a 
porous propellant,  which is attached to the projectile. 

2. Upon ignition,   the base propellant starts burning,   raising the pressure 
in the chamber.    Hot gases from the burning base propellant flow into porous grain, 
these gases eventually igniting the grain. 

3. As the porous grain burns, gases flow from a region near the end of the 
grain toward the head of the grain, thus opening up new grain surface area which in 
turn burns. 
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4. An inflow-outflow balance is set up across the end of the grain.    Inflow 
occurs as long as the pressure outside the grain is greater than pressure inside 
the grain.    Outflow occurs when pressure inside the grain is greater than the 
pressure, outside the grain. 

5. The projectile and the traveling charge grain begin    to move when the 
pressure in the chamber of the gun exceeds the shot start pressure. 

6. The above process continues until the grain burns out;    then the pro- 
jectile is driven, by the residual gas in the gun. 

Some of the assumptions used in the above model are (Fig.   1): 

1. The pressure from the breech of the gun to the base of the traveling 
charge grain is a variable depending upon time only.     That is,   no pressure 
gradient exists in the gun. 

2. The pores at the rear end of the traveling charge grain can be simu- 
lated by an ideal nozzle.    The throat area of this nozzle is the cross sectional 
area of the pores.' 

3. Gas flow into or out of the traveling charge grain cannot have a 
velocity greater than sonic. 

4. At any instant of time the gas pressure inside the grain is a constant 
from the rear end of the grain to a moving boundary inside the grain.    On one 
side of this moving boundary the gases are hot and at a high pressure.    On the 
other side of this moving boundary the gases are cool and at atmospheric pressure. 

5. The velocity of this moving boundary is given by the pressure difference 
across the boundary. 

6. The traveling charge propellant is assumed to consist of fibers of a 
known diameter oriented so that the axis of the fibers are parallel to the axis 
of the traveling charge grain.     As the moving gas boundary moves into the grain 
the surface area or the fibers exposed is the surface area of the propellant burn- 
ing in the grain.    When the moving boundary reaches the end of the grain all of 
the fiber surface area is exposed.    The fibers continue to burn until all the travel- 
ing charge propellant is burned out. 

Mathematically,   these assumptions consist of a series of ordinary dif- 
ferential equations which are integrated numerically using the method of Runga- 
Kuita-Gill.     The results of this numerical integration,   consisting of a table in 
the values of the variables of interest ( gun chamber pressure,   traveling charge 
grain pressure,   velocity,   etc. ) are listed for even increments of time. 

EXPERIMENTAL - LIGHT GAS GUN 

In the initial phase of this project, since the Interior Ballistics Laboratory 
did not have a two stage light gas gun, it was decided to verify theoretical predic- 
tions with experimental results from two stage light gas guns possessed by other 
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laboratories in BRL and other defense agencies.    The data obtained this way was 
extremely varied,  generally consisting of projectile muzzle velocity and initial 
conditiouti in the gun.    For one two stage light gas gun possessed by Weapon Sys- 
tems Laboratory we were fortunate to obtain helium pressure-time records and 
muzzle velocity.    This gas gun has a 57mm pump tube 15 feet long and a . 59 cal 
launch tube 6 feet long.    The gun used an 1 8 lb piston and normally fired a 240 
grain projectile.    Helium pressures were measured at the head end of the pump 
tube.    The transducer- used to measure the helium pressures consisted of a column 
whose deformation by the gas pressure 'was measured by resistance strain patches. 
Projectile velocities were measured in air outside the launcher tube by paper 
break screens. 

In none of the light gas installations inspected by the author was any 
attempt made to measure simultaneously the piston position,   projectile position, 
propellant gas pressure,   and helium gas pressure.    Since this data was needed 
for the complete verification of the light gas gun theories,   it was decided to build 
a small light gas gun in which all of the above variables could be measured simul- 
taneously. 

Figure 2 
IBL Light Gas Gun 

Pump Tube With Attached High Pressure Section 
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Initially,   the instrumented two stage light gas gun was to be built as 
cheaply as possible from existing hardware,   the objective for the initial experi- 
ments being to check out the instrumentation.    No attempt was made in the de- 
sign of this gun to attain velocities in excess of 20,000 f/s,    it being felt that 
design data obtained from the lower velocity gun could be used to design a gun 
which would launch projectiles at velocities in excess of 20,000 ft/sec. 

The gun as finally designed is expected to launch a 5 gram projectile at 
velocities ranging from 10,000 ft/sec to IS, 000 ft/sec.    The pump tube for this 
gun consists of a 1. 5 inch I. D.   smooth bored 37mm gun and a high pressure 
section attached to the muzzle end of the gun giving an overall pump tube length 
of 6 feet 5 inches.    Pump tube with attached high pressure section is shown in 
Figure 2. 

Figure 3 
IBL Light Gas Gun 

Inserting Gauge Ring in High Pressure Section 

The launch tube is a . 50 cal smooth bore Mann barrel 47 inches long. The 
muzzle end has a vacuum adapter so that the tube may be evacuated. A thin nylon 
plastic disc is used in the vacuum adapter to seal off the bore. Between the high 
pressure section and the launch tube is placed a gauge ring containing the tourma- 
line piezo gauge used to measure helium pressures at the chamber end. Figure 3 
shows the gauge ring,   with an inserted tourmaline piezo gauge in place between the 
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launcher tube and the high pressure section of the pump tube.    In Figure 4 is 
shown the assembled high pressure sections.    The high pressure section is held 
together by two flanges   connected  by G special bolts.    Since only about two inches 
of the high pressure section need withstand pressures over 50,000 psi,   the section 
was made in two diameters.    The maximum diameter portion (9-1/2" O. D.) was 
designed to withstand a pressure up to 200,000 psi,  and the minimum diameter por- 
tion (4" O. D. ),   a pressure of about 50,000 psi.     There were two reasons for this 
design:    (1)   the high pressure section was made lighter and (2) it was necessary 
to have a minimum thickness of steel bet\veen the radioactive source held on the 
base of the piston and the scintillation counters used to delect the position of the 
source.    The entire light gus gun is mounted on 4-wheeled carriages.    These car- 
ciages can be clamped to the double I-beam track when it is desired to fire the gun 
or they can be undamped and moved when it is desired to lake the gun apart. 

Figure 4 
1BI. Light Gas Gun 

Assembled High Pressure Section 

It is important in locating the position of the piston by means of the scin- 
tillation counters that recoil of the gun be held to a minimum.    To prevent this 
recoil an angle iron support was clamped to the middle portion of the pump tube 
and to the ends of the I-beam supports.    In firings,   using a recoil meter to meas- 
ure displacement,   gun recoil was held to less than 1/4 inch displacement.    This 
supporting brace is shown under the pump tube in Figure 2. 
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Figure 5 
IBL Light. Gas Gun 

Piston Assembly and Projectiles 

The pisum used in the pump tube is a right circular cylinder 4-3/4 inches 
long and weighs   about 2 pounds.     In Figure 5 is shown an assembled piston.    The 
piston consists of a steel cylinder with O-Rmg grooves,   a copper cup at the base 
of the piston to prevent propellant gases from leaking around the piston,   a nylon 
disc at its head end to take the shock of impact of the piston with the nozzle on the 
launcher tube,   and a hollow nut threaded into the base of the piston,   acting as a 
holder for the  radioactive source. 

To obtain interior ballistic- information from the light gas gun the following 
instruments are used: 

(1) Quartz crystal piezo pressure gauge - used to measure the propellant 
gas pressure iti the pump tube. 

(2) Tourmaline crystal piezo pressure gauge - used to measure helium 
pressure at the head end of the pump tube. 

(3) Eight scintillation counter's - used to detect the radioactive source in 
the base of the piston during the last two feet of travel. 

61 



INTERIOR BALLISTICS OF GAS AND CHARGE GUN 

(4)   Microwave interferometer - used to measure projectile displacement 
in the launcher tube. 

The quartz crystal piezo gaugi? is of a type used at the Ballistic Research 
Laboratories for the measurement of transient gun chamber pressure for a period 
of about 20 years.    When properly used the gauge has given quite reliable results. 

The tourmaline crystal gauge  is a special type developed by Atlantic Re- 
search Corporation to measure transient pressures up to about 100.000 psi.    In 
operation the tourmaline crystal is suspended in a chamber surrounded by a plas- 
tic material.    Gas pressure upon the plastic material is transmitted hydrostatically 
to the crystal which produces an electrical signal upon being compressed.    In pre- 
vious light gas gun investigations this gauge was found capable of responding to high 
pressure shocks with very little ringing.    The signal from both piezo gauges is sent 
to a multi-channel recorder thus recording propellant gas pressure and helium 
pressure as a function of time. 

The scintillation counters used to track a radioactive source held in the base 
of the piston have been described previously (ti),  as they were used in a program to 
track solid propellant grains in a 37mm gun.    Briefly,   the tracking system consists 
of a 90 millicurie Cobalt ISO source held in the base of the moving piston and eight 
scintillation counters placed along a two-foot length of the high pressure section. 
A scintillation counter consists of a container of plastiflour resin.     The gamma 
particles from the radioactive source strike the resin,   flashes of light are emitted. 
These flashes are detected by two RCA Photo-multiplier tubes,   which generate 
an electrical pulse for- each flash.    The pulses are electrically integrated within 
the counter,   giving a voltage signal which is proportional to the count rate.    Thus 
the voltage is highest when the source is directly opposite to the counter.    These 
voltage signals arc sent to a multi-channel recorder and recorded as a function of 
time.    Figure b shows the scintillation counters placed along the high pressure 
section of the pump tube.    The counters and lead blocks separating them (the blocks 
being used as radiation slits) are supported by a portable A-frame,   which may be 
placed at any position along the gun lube. 

It is important,   in using the scintillation counters,   that the gun system does 
not recoil to any appreciable extent,   since the piston position will be in error by 
the amount of recoil.     To measure this recoil,   a linear differential transformer 
(Shavitz Corporation) was used to measure displacement of the pump tube barrel. 
This unit is capable of measuring displacements as small as . 001  inch.     The volt- 
age signal from the displacement meter is fed to o  multi-channel recorder,   giving 
tube displacement as a function of time. 

A microwave interferometer is used to measure position of the projectile 
in the launcher tube as a function of lime.    This system has been described in detail 

(1) elsewhere and only a brief description will be given here.     The principle on 
which it works is the same as that for an optical interferometer.    A radar signal 
from a klystron is propagated through a hybrid junction into two branches of a wave 
guide.    The signal along one branch is directed to the muzzle by means of a horn and 
reflector,   propagates along the bore of the barrel to the projectile face.     The signal 
propagated along the other branch is directed to a fixed wave guide short.    The re- 
flected signals from both branches return to a junction and thence to a crystal de- 
tector.    The output of the crystal is a constant D. C.   voltage if the projectile is 
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Figure 6 
IBL Light Gas Gun 

Scintillation Counters Along Pump Tube 

motionless;    however,   if the piston moves,   the crystal voltage changes in ampli- 
tude as a nearly sinusoidal wave,   which goes from maximum to minimum for 
each quarter wave length change in projectile position.    After being amplified, 
this wave is sent to an oscilloscope and is recorded either on a General Radio 
Camera or a rotating mirror camera. 

Initial firings of the light gas gun have been,   and will be,   made without 
the launcher lube attached,   using the interferometer to track the piston in the 
pump lube.    The purpose of these-firings is two-fold;    namely,   to compare the 
predicted initial motion of the piston with experimental results  (the influence of 
helium pressure in piston position being small for initial motion of the piston) 
and to compare the position of the radioactive source from scintillation counter 
readings and interferometer readings.     For these piston firings only three meas- 
urements are taken; propellant gas pressure-time,   piston position as measured 
by the    microwave interferometer,   and piston position as measured by the scin- 
tillation counters. 

Subsequent firings are made with the assembled light gas gun using all 
of the instrumentation. 
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EXPERIMENTAL - TRAVELING CHARGE GUN 

The initial experimental work on the traveling charge gun project was 
with a small (. 625 cal) thrust stand used to evaluate possible propellants.    This 
thrust stand has been adequately described in the 4th Symposium Report'2) and 
will not be described here. 

Experimental work using this stand was terminated when it was discovered 
that opening of the rupture disc set up a shock wave in the gas column     This shock 
wave fractured the propellant causing erratic burning rates.    Significant results 
from thrust stand firings are given in the results section of this report. 

Subsequent firings on the traveling charge project have been made with 
the . 625 cal traveling charge gun.    The gun was initially designed by Vest for 
the traveling charge gun program in 1950 and is described in a report issued in 
1951^'.    This gun has been somewhat modified for the purpose of the present 
program.    The gun has a chamber with an internal diameter of . 625 inches and 
a length of 7 inches.     Ignition of the igniter propellant is accomplished by using 
an electric squib,   the leads of which are brought into the chamber by means of 
an insulated firing pin.    The projectile with the attached traveling charge is held 
in the forward end of the chamber by means of a brass rupture disc (. 015 inch 
thick).    The propellant arrangement used in the chamber of the gun is shown in 
Figure 7.     Placing of the traveling charge propellant in the breech is shown in 
Figure 8.     The length of the barrel is  9 feet (173 calibers).    Attached to the muzzle 
of the gun is an adapter by which the barrel may be evacuated for high velocity 
firings.     In this adapter a thin disc of nylon is used to seal out the atmosphere.   In 
Figure 9 is shown an overall view of the gun. 

The present objective in the traveling charge gun program is to operate 
the gun at high velocities (8,000  -  12,000 ft/sec) and determine if the porous 
propellant used as a traveling charge will burn in a reproducible manner.     Con- 
sequently the instrumentation is quite simple and consists of a quartz piezo gauge 
to measure chamber pressure-time,  and three printed circuit break screens. 
The chamber with the attached quartz gauge is shown in Figure 8 and the three 
screens are shown in Figure 10.     A plywood shield with a hole cut in it is used in 
front of the first screen to prevent propellant fragments from rupturing the screen 
prematurely.    The screens are connected to a 1  MC Potter Chronograph which 
measures Ihe elapsed lime between the breaking of the screens.    Muzzle velocities 
are obtained by extrapolating the screen velocities back to the muzzle of the gun. 

The traveling charge projectile for this gun consists of a duraluminum 
right circular cylinder- to which is cemented a cylinder of felted nitrocellulose. 
The grain of nitrocellulose is inhibited on the outside by a layer of spray enamel 
and two layers of Teflon tape.    The Teflon tape,   besides acting as an inhibitor, 
fills the gap between the sub caliber felled nitrocellulose grain and the bore of the 
gun.    An assembled traveling charge projectile is shown in Figure 7. 

RESULTS -  LIGHT GAS GUN 

In this section of the paper we will attempt to compare theoretical pre- 
dictions with each other and with experimental results,   where such results are 
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Figure 7 
Traveling Charge Gun 

Scintillation Counters Along Pump Tube 

Figure 8 
Traveling Charge Gun 

Flaring of Propellant in Gun Breech 
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Figure 9 
Traveling Charge Gun 

Overall View 

available.    These comparisons are not complete,   but merely serve to illustrate 
the methods used. 

The first prediction method and the easiest to use is Charters' Method 
for a two-stage light gas gun. 

Because of the assumptions used in the method,   predictions are limited 
to guns with heavy pistons,   that is,   the velocity of the piston is always subsonic 
with respect to the sound velocity of the light gas being compressed ahead of it. 
In addition,   there must be sufficient light gas left in the chamber of the gun so 
that the chamber appears to be of infinite size to the projectile (e. g. ,  a rare- 
faction wave does not catch up with the projectile). 

The Charters'  method is useful in the initial design of a light gas gun 
and it was so used in the case of the 37mm - . 50 cal light gas gun.    While the 
method is easy enough to do by hand on the desk calculator,   it was felt that it 
would be easier to survey a large number of cases by setting up the equations 
on the nigh speed digital computer,   so the method was programmed on the 
ORUVAC.    Input data to the problem consisted of: 
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1. Length and caliber of launcher lube 
2. Weight of projectile 
3. Thermodynamic constants of light gas 
4. Caliber of pump tube 
5. Maximum pressure and pressure increment 
6 Maximum temperature and temperature increment 
7. Minimum distance between piston face and end of pump 

tube (buffer zone) 

The question was asked oi the program that,   given launcher tube charac- 
teristics,   pump tube caliber-,   projectile weight,  and a range of light gas tempera- 
tures and pressures,   what would be projectile velocities obtained,   and what 
would be the initial light gas pressure,   piston weight,   and pump tube length tieces- 
ary to attain these velocities. 

The chart shown in Figure 11 is a summary of the results of these compu- 
tations for the 37mm-. 50 cal light gas gun.     Maximum helium pressure is shown 
in the range from 100,000 psi to 400,000 psi,   maximum helium temperature,   in 
the range from 2000 to ?^QQÜK.    The results are given in terms of pump tube 
lengths ranging from 5. 5 to 7. 0 feet;    piston weights from 1. 9 to 2. 5 pounds; and 
muzzle velocities from 14,000 to 15,500 ft/sec.    A compromise had to be made 
between muzzle velocity and pump tube length,  so a muzzle velocity of 15,000 
ft/sec and a pump tube length of 7. 0 feet was chosen.     This gives a maximum 
helium pressure of 120, 000 psi and a piston weight of about 2. 0 pounds.    These 
values were reasonable for a first design of the 37mm-. 50 cal light gas gun. 

A study has been made on the agreement between experimental firings 
of a heavy free-piston light gas gun (57mm-. 50 cal) fired by Weapons System 
Laboratory and Charter's Method predictions.    Figure 12 shows the agreement 
between predictions and experimental results.    This study indicates that,   for this 
gun,   predictions using Charter's equation give optimistic muzzle velocities for 
helium chamber pressures less than 95, 000 psi and pessimistic muzzle velocities 
for helium chamber pressures in excess of 95,000 psi.     However,   further study 
will have lobe made of the agreement between prediction using Charter's Method 
and experimental results with closer control of the   experimental conditions so 
that they conform in part to the assumptions used in the theory. 

A prediction method possessing greater design usefulness is that'of the 
simple isentropic compression method to determine the performance of the light 
gas gun.     In the design of the 37mm-. 50 cal gun this method was used to predict 
piston displacement-time data,   which in turn were used to determine the position 
of the scintillation counters for tracking the piston.    The data was also used for 
the design of the high pressure section of the pump tube,   since it was desired 
that portions of the high pressure section be as thin as possible in order that the 
maximum amount of radiation from the source reach the scintillation counters. 

Results from this prediction method have been compared with experimental 
firings using Weapons System Laboratory's 57mm-. 50 cal light gas gun.    In Fig- 
ure  13 this comparison is illustrated.     As can be seen,   agreement between   meas- 
ured and predicted helium pressures is very good.    Slight oscillation in the measured 
pressure-time trace is believed to be due to weak shocks moving in the gas column 
between the face of the piston and the rear of the projectile,.    It will be noticed that 
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Figure 10 
Printed Circuit Break Velocity Screens 
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agreement between measured and predicted muzzle velocity is also quite good. 
The nearly smooth rise in helium pressure indicates that the piston in the 57mm 
pump lube is moving at a velocity which is either subsonic with respect to the 
helium ahead of it,   or slightly supersonic,   such that any shock waves generated 
are quite weak.    Since the prediction method assumed no shock wave formation 
or pressure gradients in the gas column up to start of motion of the projectile, 
and the gun acts in a similar manner-,   it would be expected that there would be 
fair' agreement between prediction and experiment.    This agreement has been 
observed not only in the case illustrated but in others of the same type.    This 
type of gun is called the heavy piston gun,   which can be defined as a gun in which 
the piston always moves at a velocity which is subsonic to the gas being compressed 
ahead of it.     The opposite typt: of gun is the light piston gun in which the piston for 
an appreciable portion of its travel moves at a velocity which is supersonic to the 
gas ahead of it.    Shock waves of greater or less intensity are formed in the light 
gas.    Attempts to obtain agreement between data from the prediction method utiliz- 
ing ordinary differential equations and experimental data from the light piston type 
of light gas gun have been difficult if not impossible.    Thus this prediction method 
should not be. used for guns of this type. 

The method of characteristics as applied to light gas gun problems has 
been programmed for the OHlJVAC digital computer.    Programming this method on 
to a digital computer proved to be a very complex process,   which ultimately was 
completed only for the compression cycle of the two-stage light gas gun.     Memory 
limitations in the ORD VAC (maximum word capacily-4096 words) prevented the 
programming of the launch cycle on to the machine.    Another limitation of the 
program was discovered in that the shock wave had to form in the light gas before 
a sound wave from initial  motion of the piston   reflected off the base of the pro- 
jectile,   which  meant that cases for which the initial piston velocity was appre- 
ciably subsonic could not be solved using this method.     Changes in the program- 
ming  logic to lake care of such cases  would have exceeded the memory capacity 
of the machine. 

In Figure  14 a theoretical prediction is illustrated using the method of 
characteristics.    The gun used as an example is a 2Umrn-. 50 cal light gas gun, 
dimensions of which correspond to a gun fired by the personnel al the Naval 
Research Laboratory.    Because of the initiation of shock limitations in the char- 
acteristics program,   the  release pressure of the piston had to be increased to 
130,000 psi.     The solid lines in the figure are the piston, incident,  and reflected 
shock paths as computed by the charadensucs program.     Experimental confir- 
mation of these theoretical results would require the installation of pressure 
transducers at intervals along the length of the pump tube.    As yet this has not 
been done,   nor is this data available  from other sources. 

Because of the digital computer memory limitations,   work on this pro- 
gramming approach had to be abandoned.     This program is now being used to 
compare its predictions with predictions from the Richtmyer-Von Neumann "q" 
method. 

The most promising approach used by this laboratory to date is that of 
the Richtmyer-Von Neumann "q" method.     In this method the light gas region 
between the  face of the piston and the base- of the projectile is divided into 50 
mass elements.     In the computer calculations,   the position,   pressure,   velocity. 
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energy,  and volume of these mass segments are computed for- each time step 
as the piston is pushed by the propellant gas into the light gas.    When the pres- 
sure of the mass segment next to the base of the projectile increases above a 
predetermined level,  the projectile starts to move.    The problem is terminated 
when the projectile leaves the bore of the gun.    This method has been programmed 
in a code which can be used interchangeably on both the OROVAC and BRLESC 
digital computers;    however,   all of the completed light gas gun prediction runs 
have been made on the BRLESC computer.     The program as coded on to the 
BRLESC is quite small (1220 words) but because of numerical stability consid- 
erations a problem requires a very large number' of computations in order to 
run to completion.     A problem which takes about 5 minutes on BRLESC would 
run for 30 hours on ORUVAC. 

At the present lime,   very few computer- runs have been made using this 
problem.    It is of interest to compare the results from this program with that 
of the characteristics program mentioned previously.    In Figure 14 is shown 
such a compar-ison.    The solid lines represent piston and shock paths as deter- 
mined by the characteristics method for- the compressor portion of the 20mm- 
. 30 cal light gas gun.    The dotted lines represent piston and shock paths as 
computed for the same conditions using the Richtmyer-Von Neumann   q   method. 
It can be noticed that while these are differences in position of the shock path, 
both paths are nearly parallel,   indicating that shock velocities are nearly the 
same.    Differences in piston paths are attributed to different methods used in 
computing the coefficient of frictional resistance between the piston and the bore 
of the compressor lube. 

The few results obtained from the computer to date have not allowed us 
to make any comparison between predicted and experimental results. 

RESULTS - TRAVELING CHARGE GUN 

Theoretical results for the constant pressure traveling charge gun have 
been presented in two HRL technical notes'0'' ^' and these results will not be 
repeated here.     The results obtained,   however,   indicate that traveling charge 
guns used to obtain hypervelocities will be quite long;    lengths ranging from 
50 to 1000 feet would not be uncommon. 

The more complex mathematical model of the traveling charge gun has 
been programmed on to the ORDVAC computer-.     Figure 15 portrays the results 
obtained   for a typical computer- run.     Presented are the pressures in the chamber 
of the gun and the pressure in the traveling charge grain.    An initial pressure rise 
is given to the traveling charge projectile by the burning of an igniter charge in 
the chamber of the gun.    This igniter gas pressurizes the traveling charge grain, 
ultimately causing the pressure inside the grain to rise.     For a period of lime 
the pressure in the gun chamber is greater than the pressure inside the traveling 
charge grain.    This is called the inflow period.    Ultimately,   the pressure inside 
the traveling charge grain exceeds the chamber pressure and gases flow out of 
the traveling charge grain.     This rs called the outflow period.     This outflow period 
continues until the traveling charge burns out.    For the theoretical case presented 
here 99. 8 grains of traveling charge propellant accelerated a 5-grain projectile 
to a velocity of 17, 150 ft/sec in (iO feet of travel.     Unlike comparable light gas 
guns,   the maximum pressure experienced was about 60,000 psi. 
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At the present time only a very limited number of firings have been made 
in the . 625 cal traveling charge gun,   so it is too early in the program to make any 
comparison between traveling charge gun theory and experimental results. 

As mentioned previously, the thrust stand firings were made as part of 
an effort to evaluate possible propellants for the traveling charge gun. Among 
the propellants tested in the thrust stand were: 

1. Armour combustible cartridge case material containing 
cotton liners and ammonium perchlorate 

2. Cast rocket propellant 
3. Cast propellant with voids provided by microballoons 
4. Cemented ball powder propellant 
5. Felled nitrocellulose propellant 

Of the five propellants tested,   the felted nitrocellulose propellant showed 
the most promise in firing tests on the thrust stand.    In a series of tests,   grains 
of felted nitrocellulose with densities ranging from Ü. 86 to 1. 09 gm/cc were fired 
in the thrust stand.    Grains whose densities were less than 0. 93 gm/cc exhibited 
uncontrolled    burning rates of 10, 000 in/sec or greater at a pressure range of 
30,000 to 50,000 psi.     Table II gives specific impulse and overall burning rates 
for grains where densities range from 0. 93 to 1. 09 gm/cc.     It will be noticed 
that the burning rale of the propellam decreases as the density increases and 
that, in general the specific impulse of the propellant increases as the density 

increases. 

Density Length Isp Burning Rate 
gm/cc: in sec in/sec 

0. 93 2. 94 80 8400 
0. 94 3. 375 110 8440 
1.03 2.5 73 4200 
1.06 3.25 135 4330 
1.09 1.75 171 4375 

DISCUSSION 

As was mentioned previously in both papers presented at the 4th Sym- 
posium in Uypervelocity Impact,   we are limited in the advancement of both 
programs by the lack of adequate experimental data.     Work with the heavily in- 
strumented 37mm  - . 50 cal light gas gun is expected to provide some data which 
can be used to verify the highly developed theories concerning the light gas gun. 
In addition,   other investigators are beginning to instrument their guns,   so we 
can expect in the future to see greater effort being expended in developing a 
sounder' design for these guns. 

TAB ^E II 

Length Isp 
in sec 
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Currently,   light gas gun work in the Interior Ballistics Laboratory will 
consist of using the predictions supplied by the Richtmyer-Von Neumann ' q 
method to guide experimental work on the instrumented light gas gun.    Concur- 
rently the theoretical method will be used to design a 37mm - . 50 cal light gas 
gun which will be capable of accelerating projectiles to velocities in excess of 
20,000 ft/sec. 

It is also planned that the Richtmyer-Von Neumann "q" method will be 
revised so as to account for real gas effects and heat losses from the light gas 
to the wall of the bore.    Attempts will also be made to use this program for a 
3-slage gun such as the shock-heating light gas gun devised by Bioletti. 

Theoretical work on the traveling charge gun is considerably more 
difficult than theoretical work on the light gas gun;    so at the moment traveling 
charge gun theory is not as well advanced as that for the light gas gun.    Some 
effort will be made to apply the principles developed for the light gas gun to 
traveling charge gun theory. 

Meanwhile development of a hypervelocily traveling charge gun will 
rely heavily on experimental work. 
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EXPERIMENTS WITH A TWO MILLION VOLT 

ELECTROSTATIC ACCELERATOR 

J.   F.   Friichtenicht 

Space Technology Laboratories, Inc. 
Canoga Park,   California 

I.    INTRODUCTION 

Previous papers ^ • 2 discussed the pertinent aspects of accelerating 
charged particles by electric fields for hypervelocity studies and described the 
operation of a 120 kilovolt accelerator.    This work demonstrated the feasibility 
of the electrostatic method and indicated that an electric accelerator would be 
a valuable supplement to the more conventional light gas gun and explosive tech- 
niques.    A two million volt particle accelerator designed to increase the particle 
size and velocity ranges previously available from the 120 kilovolt accelerator 
has been constructed and tested at the Research Laboratory of Space Technology 
Laboratories.    A description of the accelerator and a discussion of experiments 
performed using it are included in the following sections. 

The velocity attained by a charged particle in an electric accelerator is 
limited only by the charge to mass ratio of the particle and the total accelerating 
voltage to which it is subjected and is given by   v =^I   W^.    Let us first consider 
the problem of charging the particles.     The presence of charge results in an elec- 
tric field at the surface of the particle.    The maximum positive charge which can 
be placed on a particle is that which produces an electric field sufficient to evapo- 
rate ions from the surface.    A method of depositing charge on particles by contact 
has been described elsewhere '■' ^ and results in charge to mass ratios for iron 
spheres ranging from about 85 coulombs/kilogram for 0. 1 micron radius particles 
to about 0. 85 coulombs/kilogram for particles of 10 microns radii.    Larger values 
are obtained for particles of less dense materials.    These values are lower than 
might be attainable by other techniques but the simplicity and ease of operation of 
the contact charging method appear to fit best the needs of this particular application. 

Using the experimental values of charge to mass ratios as a basis,  the 
accelerating voltage required to obtain given velocity and size ranges is easily cal- 
culated.    These considerations as well as questions of cost and versatility led to 
our choice of a commercially available voltage generator as the main component 
of the electrostatic accelerator.    A two million volt Van de Graaff accelerator was 
obtained from High Voltage Engineering Corporation and subsequently modified. 
The solid line in Figure 1 indicates the predicted performance of this device 
using a nominal accelerating voltage of 1. 75 million volts and iron particles with 
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charge to mass ratios as indicated above.    The points on Figure 1 are the results 
of a typical set of experimental measurements made upon completion of the par- 
ticle accelerator and show generally good agreement with the  predicted  per- 
formance. 

II.    MODIFICATION OF THE ACCELERATOR 

The modification of the Van de Graaff was accomplished by removing 
most of the components of the positive ion source and associated circuitry from 
within the high voltage terminal and replacing them by the particle charging and 
injection mechanism.    Among the components retained for integration into the 
new system were two 300 watt,  400 cps belt-driver alternators to supply primary 
power,  a low voltage D. C.   power supply,  and the focus power supply.    The re- 
mote control system which consists of selsyn and solenoid driven lucite rods 
extending from ground to the high voltage terminal was also retained. 

A drawing of the mechanical portion of the charged particle injector is 
shown in Figure 2 and its operation is as follows;    The source of particles,   in 
the form of a powder,   is placed in a rectangular cavity.     During operation,   the 
assembly supporting the charging electrode and that containing the powder are 
initially at a high positive potential.     The particle reservoir is pulsed to a lower 
potential which produces an electric field between the elements.    The field in- 
duces a net charge on the particles on the surface of the bed of material and thus 
produces an electrical force on those particles.     When'this  force exceeds those 
of gravity and cohesion,   the particle is lifted from the bed and accelerated across 
the gap.    Actually,   a number of particles are lifted almost simultaneously and 
iorm a ciuua which has properties similar to those of a gas.    Some of the particles 
within the cloud diffuse from within the reservoir through the horizontal holes in 
the electrode assembly into the region of the charging electrode.    Since the mating 
flange is at ground potential,  an electric field always exists between the flange and 
the electrode assembly.    The particles are accelerated by the electric field back 
and forth across ihe gap,   exchanging charge each time they touch a surface.     The 
fields are shaped so as to direct the particles toward the charging electrode. 
Once a particle comes in contact with the electrode it develops a much larger net 
charge and is forced away from the electrode.    Some of the highly charged par- 
ticles pass through the small entrance hole into the accelerating region to the 
left,   where they are subsequently accelerated through the entire accelerating 
voltage. 

A block diagram of the circuit wiring within the high voltage terminal of 
the accelerator is shown in Figure 3.     Control of the circuits is accomplished by 
means of plastic rods which extend the length of the accelerator column and are 
driven by selsyns or solenoids as indicated.    The charging and injection mech- 
anism requires an electrode power supply and a high voltage pulser to pulse the 
reservoir.    High voltage is supplied by a half-wave voltage doubter circuit vari- 
able from 0 to 2 8 KV D. C.     The output of the pulser is a flat topped pulse about 
10 milliseconds long whose amplitude is variable from 0 volts to almost the full 
voltage of the power supply. 

The existing focusing system was found to be adequate and was retained 
for incorporation in the completed particle accelerator.     Calibration curves 
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giving the best focus conditions for wide ranges of electrode voltage and accelerator 
voltage were obtained.    It was found that about 90 percent of the particles injected 
into the accelerator tube could be focused into a 3/16 inch diameter spot. 

Figures 4 and 5 are photographs of the completed accelerator.    Figure 4 
is a rear view of the accelerator showing the pressure vessel and the concrete 
radiation shielding.    The high voltage terminal and accelerating column are con- 
tained within the pressure vessel.    The experimental area of the accelerator is 
shown in Figure 5.    The control console is located at the left while the acceler- 
ator tube extension can be seen extending from within the concrete enclosure. 

III.    EXPERIMENTAL TECHNIQUES 

An active experimental program using the accelerator is in progress. 
Most of the work so far has been done under the terms of NASA Contract NAS5- 
763,  Subcontract No.   C135A-1043 and has been concerned with those properties 
of high speed impact which might prove useful in micro-meteor detection sys- 
tems.    Effort has been concentrated on studies of impact ionization and impact 
light emission and tests involving acoustical detectors.    The results of experi- 
ments on the light flash and ionization effects will be described in another paper 
while tests of the acoustical detectors will be described below to illustrate the 
operation of the accelerator. 

In all of the experiments on transient phenomena the projectiles were iron 
spheres ranging from about 0. 2 micron radius to about 1. 5 microns radius.    The 
smaller particles achieved velocities up to about 12 km/sec and the larger ones 
as low as 2 km/sec.    The average particle was about 1. 5 microns in diameter 
and had a velocity of about 5 km/sec.    In all cases,  however,  the velocity and 
mass of each particle was measured prior to impact and correlated with the 
observed phenomena. 

The charge on each accelerated particle is determined by measuring the 
amplitude of the voltage signal induced on a cylindrical drift tube of known 
capacitance as the particle passes through it.    The duration of the observed signal 
is simply the transit time through the tube.    From this the velocity can be deter- 
mined.    The mass of the particle can then be computed from   m = 2qV/v2   where 
V   is the total accelerating voltage.    Since the particles are spherical,  the radius 
can readily be determined.    Techniques for measuring the trajectory of the par- 
ticle through the detector have also been developed * and these allow the cor- 
relation of particle parameters to observed impact sites. 

For the most of the dynamic measurements the detector signal was 
amplified and displayed on one trace of a Tektronix 551 dual-beam oscilloscope. 
The information from the experiment in question was displayed on the other 
trace.    Generally,   the oscilloscope was set to trigger on a signal from the de- 
tector.    Photographs of the observed traces were made for data reduction pur- 
poses.    The length of the detector was tailored to fit specific experiments and 
many different detectors were used during the course of this work.    This 
arrangement provides a time base for time-of-flight measurements to insure 
an exact correlation between observed particles and observed impact effects. 
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Figure 4.    Rear View of the Two Million Volt Accelerator. 
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It might be instructive to include a brief qualitative discussion of errors 
in measurement at this point.    Perhaps the largest single source cf error is that 
of the measurement of pulse height and length from the photographs.    There is 
usually quite a large variation  in these quantities due to the size variation of the 
particles used.    The gains are usually adjusted so that the larger signals remain 
visible on the oscilloscope screen.    Consequently,  some of the smaller signals 
may have deflections of only a centimeter or so and it is difficult to measure 
these signals to within ton percent.    The same reasoning applies to pulse duration 
and to signals observed from the phenomena under study.    In some cases,  pre- 
cision is further sacrificed to preserve a certain time relationship between 
detector signals and specific impact effects.    In general,  the relative errors are 
greater for smaller signals.    Most of the experimental information is probably 
dependent upon surface conditions of localized areas.    It is possible that there 
might be significant differences in these conditions during the course of any one 
experiment.    All of these things contribute to the spread in data which is evident 
for most of the results shown in the following section.    Most of the error can be 
reduced by improved techniques but at the sacrifice of quantity of data obtained. 
Future measurements will probably be refined to eliminate most of the errors 
discussed in this section. 

The accelerator itself is manually controlled by the operator.    Particles 
are injected and subsequently accelerated at the discretion of the operator.    The 
number of particles injected at one time can be coarsely adjusted from the 
control console.    For most of the work to be described,  only a few particles (and 
frequently one or none) were accelerated at any one time.    This simplified cor- 
relation of observed results. 

IV.    TESTS OF THE ACOUSTICAL DETECTOR 

The acoustical detector^ has enjoyed the most widespread use in direct 
measurements of micrometeorites from satellite vehicles.    Such a detector con- 
sists of a crystal transducer which is mechanically coupled to a metallic plate of 
large area.    The crystal is sensitive to mechanical vibrations of the plate caused 
by the impact of a meteorite.    An electrical signal is produced by the crystal 
which is amplified and subsequently transmitted in an appropriate fashion. 

It has been shown that the electrigal impulse is proportional to the momen- 
tum of the impinging particle.     This has been verified by experimental measure- 
ments of both elastic   and inelastic impacts.    The measurements described in 
the following paragraphs were made to extend both the size and velocity of the 
calibration particles.    The use of particles from the electrostatic accelerator 
reduces the momentum by about four orders of magnitude compared to the 
momenta of particles previously used for calibration purposes.    This reduction 
caused experimental difficulties,  however,   because the detectors provided for 
use by the NASA were not sufficiently sensitive to be used directly and modifi- 
cation was required in order to make measurements.    The results of the meas- 
urements are quite general in nature,   though,  and are adequate for describing 
the phenomena involved. 

A sample crystal transducer was given to us by the NASA for study.     It 
consisted of a-cylindrically shaped lead zirconate crystal encapsulated in an 
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aluminum can.    Its natural frequency of vibration was about 100 KC.    Early 
experiments showed that impacts on an aluminum plate which was coupled me- 
chanically to the can failed to produce measurable signals.    The aluminum plate 
was removed and particles were allowed to impinge on the face of the can.    In 
this case signals were observed but it was apparent that shock waves reflected 
from support members impaired the validity of the measurements.    As a con- 
sequence of this,  the crystal was removed from the can and suspended in a 
rubber grommet with its axis parallel to the beam cf particles from the accel- 
erator.    The face of the crystal exposed to the impinging particles was coated 
with conducting silver paint and electrically grounded.    The signal from the 
crystal was picked up by means of loops around the ends of the crystal. 

The observed signal was fed through a wide band amplifier and displayed 
on an oscilloscope in the usual manner.    This results in an exponentially de- 
creasing signal as illustrated in Figure 6-a.    (The signal illustrated resulted 
from a glass bead dropped from a height of a few centimeters.)   The presence 
of low frequency noise restricted the use of this technique to simply measuring 
frequency.    To reduce some of the noise problems the amplified signal was fed 
through a relatively low   Q   resonant circuit which was tuned to the resonant 
frequency of the crystal.    This circuit is shown in Figure 6-b and a typical 
observed signal is illustrated in Figure 6-c.    The amplitude of the transducer 
signal was measured at the point of maximum excursion from the base line.    It 
can be shown that the signal at the output terminals of the tuned circuit is given 
by 

" Vo 

r _    U3t _ (ut * 

2(3 2Q 
[e      c    A Bin  (cut + 0)  + e B sin  (cut + 6) I 

where   V0   is the amplitude of the first half-cycle of the crystal output,    Qc   is 
the   Q   of the crystal,    Q   is the   Q   of the tuned circuit,     05   is the angular 
frequency of vibration,  and   A   and   B   are constants.    Thus,  the measured sig- 
nal is proportional to the electrical impulse produced in the crystal by a high 
speed impact. 

It is reasonable to assume that for particles of constant mass the ampli- 
tude of the observed signal can be written as   V =    F (v) v   where   V   is the 
amplitude defined above and   F(v) is a function which depends upon the nature of 
the impact.    There are essentially three kinds of impact which should be con- 
sidered.    These are elastic impacts,  completely inelastic impacts,  and inelastic 
impacts enhanced by the expulsion of material from the crater which increases 
the amount of momentum imparted to the crystal.    According to Reference 3, 
the additional momentum imparted by the expelled material is about two and one- 
half times the initial particle momentum at 70 km/sec and less than that for 
lower velocities.    It is likely lhat all of the impacts  observed in this work were 
of the latter type.    For this reason,   the microphone signal was normalized to 
the mass of the particle and plotted as a function of particle velocity in Figure 7. 

There has been some conjecture that the impulse delivered to the crystal 
is proportional to the square of the velocity.    It is evident from Figure 7 that the 
data are not of sufficient precision to justify a choice between a velocity or ve- 
locity squared dependence.    However,   solid curves for each possibility are 
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Figure 6.     Circuit Diagram for Measuring iht- Output of an Acoustical 
Detector and Observed Waveforms, 
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shown on the figure.    Each curve was arbitrarily normalized at the open circle. 
Except for three points it appears that the velocity dependence is a slightly 
better fit. 

If one makes the assumption that   F(v)   is a slowly varying function over 
the velocity range of interest,   it can be replaced by a constant.    This implies 
that the microphone signal is proportional to the momentum of the impacting 
particle.    The data of Figure 7 are replotted to test this hypothesis in Figure 8. 
Again it is clear that the large spread in the data points prohibits the establish- 
ment of a precise relationship.    Also,   the range of momentum available is quite 
small.    To obtain an independent calibration point with a different value of mo- 
mentum,  plastic beads weighing approximately 100 micrograms were dropped 
on the face of the crystal from a known height.    This was done in air but no drag 
corrections were made nor was the observed departure from an elastic impact 
taken into account.    However,   the computed value of momentum was probably 
accurate to better than ten percent which is at least as good as our other measure- 
ments.     Using this point and the origin as the other,   the elastic impact line shown 
in Figure 8 was obtained.    Our hypothesis that   F(v)   is a constant is undoubtedly 
violated brt the experiment illustrates one significant point.    Nearly all of the 
data points obtained with the high speed particles lie above the elastic impact 
line.    This tends to indicate that the ejected material imparts at least as much 
(and in most cases more) momentum than does the impacting particle over the 
velocity range studied. 

Surface irregularities of the impacted area might account for some of the 
scatter in the data.    Therefore,   measurements were made using a plate of chemi- 
cally polished aluminum which was glued to the crystal face.    Optical examination 
indicated that the surface was quite smooth and little evidence of surface im- 
perfections could be observed.    The results of measurements using this arrange- 
ment are shown in Figure 9.    The spread is still quite large and it is not at all 
evident that the situation was improved by this means.    It is apparent,  though, 
that the data is in quite good agreement with the data obtained with the silver 
coated surface. 

In future work,   efforts should be made to improve the precision of the 
measurements so that a better determination of velocity dependence can be made. 
A more sensitive crystal would facilitate the measurements as well. 

V.    SUMMARY 

A two million volt electrostatic hypervelocity projector has been con- 
structed and tested and is presently being used in a -program of hypervelocity 
research.     The device has been found to be particularly well suited for labora- 
tory micro-meteor simulation.    Velocities up to 14 km/sec have been observed 
using spherical iron projectiles.    A limited amount of work using carbon part- 
icles has been done.    The lower density of the carbon results in larger charge 
to mass ratios and velocities up to 25 km/sec have been observed.    Problems 
associated with handling of the carbon particles have prevented systematic 
studies as yet but work is continuing on this program. 
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CONCLUDING REMARKS 

H.   F.   Swift 

U. 3.   Naval Research Laboratory 
Washington 25,  D.   C. 

During the past 18 months the maximum velocity capability of all major 
types of hypervelocity ballistic accelerators has been substantially increased. 
At present,   gas guns are capable of accelerating small plastic cylinders to 10 
km/sec,  and explosive accelerators have launched beryllium rods to velocities 
above 20 km/sec. 

The most direct advance in light-gas gun technology since the 4th Hyper- 
velocity Impact Symposium has been the construction of a group of guns capable 
of accelerating small,   low density projectiles to velocities between 7. 5 km/sec 
and 10 km/sec.    Advanced models of both shock heated and adiabatic compression 
guns have been developed to reach these performance levels,  and a new concept 
of utilizing piston deformation for increasing peak compression ratios has been 
applied.    Of more basic significance,   however, has been the development of com- 
putational techniques capable of accurately predicting the performance of light- 
gas guns.    These techniques have proven accurate over a very wide range of gun 
design and operation parameters.    Since empirical data associated with a par- 
ticular gun-firing situation are not required,  these techniques can be used to 
estimate the results of firing situations not presently attainable with greater 
assurance  than   was possible in the past.    Such computational techniques are 
presently being used for the design of gas guns with higher performance capa- 
bility than is presently attainable,   and for the evaluation of techniques that may 
increase maximum gas gun performance, such as pre-heating of the driver gas. 

The biggest advances in explosive accelerator technology achieved during 
the last 18 months are the further perfection of the cavity charge,  and the initial 
development of the cylindrical liner charge.    At present,   the explosive cavity 
charge may be considered as a research tool although considerable effort is being 
placed upon its additional development.    The cylindrical liner charge is still in 
an early stage of development,   but its presently demonstrated velocity capability 
with a limited number of materials assures its future importance.    Techniques 
have also been developed for utilizing the train of hypervelocity pellets generated 
by a conical liner charge for the study of individual hypervelocity impacts. 

A group of specialized ballistic accelerators has become increasingly im- 
portant within it.e past 18 months.    At present,  many of the micrometeroid impact 
studies where single impacts must be considered are being conducted using elec- 
trically powered micrometeroid simulators.   Other techniques presently under 
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development should find application for the launching of distributed mass projectile 
and low-strength projectile packages to hypervelocities using very low peak 
accelerations. 

In the near- future,   the peak velocity capability of gas guns can be expected 
to increase.    The maximum mass and density of projectiles being launched should 
also increase sharply as planned new facilities go into operation.   The maximum 
velocities presently attainable with gas guns cover at least most of the velocity 
regimes of interest for several important ballistic applications.    Therefore,   a 
change in the main emphasis on accelerator development programs can be expected 
toward the development of techniques for accelerating as wide a range of models 
as possible to maximum velocities up to 1Ü km/sec.    The major areas of effort 
for such programs will be the reduction of peak model acceleration during gun 
launch and the development of sabots capable of withstanding these accelerations. 

Considerable future effort in explosive accelerator technology improvement 
programs may be expected in the further development of cylindrical liner charges 
to the point where various pellet materials can be accelerated to near their theoreti- 
cal maximum velocities.    Development of other explosive acceleration techniques 
should also continue,   and more emphasis may be expected on the development of 
diagnostic   instrumentation for the evaluation of explosive charge performance. 
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INTRODUCTION TO THE THEORY SESSIONS 

Floyd E.  Allison 

Ballistic Research Laboratories 
Aberdeen Proving Ground,   Maryland 

One purpose of an introductory paper is that of defining the problem in 
its broad aspects.    This has already been done in an excellent paper by Hopkins 
and Kolsky^',  which was presented at the Fourth Hypervelocity Impact Symposium. 
Another purpose of an introductory paper could be to outline in a general way var- 
ious approaches that have been suggested for solving the problem.    In the case of 
hypervelocity impact,  the approaches that have been suggested range from rigorous 
solutions based on fundamental mechanics with assumptions concerning the domin- 
ant forces to numerous theoretical models based on sweeping assumptions concern- 
ing the mode of deformation as well as the dominant forces.    Of course,  the degree 
of approximation introduced hy such assumptions depends on how closely the dom- 
inant forces and assumed mode of deformation represent those actually encountered 
under impact conditions. 

Historically speaking, the astronomers were the first scientists to become 
interested in the mechanics of hypervelocity impact.    The problem of crater forma- 
tion was considered in 1936 by Opik '  ',  who proposed a theoretical model for the 
problem of meteorite impact and proceeded to make calculations using basic prin- 
ciples of mechanics.    In his analysis,  Öpik assumed that; 

1. The earth or rock into which the meteorite is penetrating behaves as 
an incompressible fluid with a finite yield strength;    i. e. ,   the pressure resisting 
the forward and radial motion each consist of two terms; 

p =  l/2p z2    /   k 

p1 = 1/2P  r2   /   k <1) 

where    p   is the density of the material into which the meteorite is penetrating. 
The velocity dependent terms represent the inertial or hydrodynamic resistance 
and the parameter   k     represents the resistance to plastic flow or rupture. 

2. The pressures resisting the forward and the radial motions are related 
by the strong form of Bernoulli's equation.     (This is a definite assumption since 
the penetration by the meteorite is not a steady-state process. ) 

3. The meteorite is assumed to flatten at right angles to its direction of 
impact.    The approximations introduced by each assumption could be a subject 
for discussion.     However,  the last assumption is probably the most controversial 
because it imposes a priori a specific flow pattern for the meteorite. 
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There appears to be no further work done on the problem of meteorite 
impact until the possibility of constructing space vehicles was seriously considered 
and possible damage due to collision with meteoroids became important.    In 1947 
Whipple "' proposed that space vehicles could be protected by a meteor bumper, 
and,  in 1948,  Grimminger^  ' published a paper in which he considered some aspects 
of the impact problem.    With regard to the penetration of a meteoroid,  Grimminger 
assumes: 

1. The meteor is not deformed by the impact. 
2. The force resisting the motion'of the meteoroid is a dynamic pressure 

proportional to the square of its instantaneous velocity if the velocity is 5 times the 
velocity of a plastic wave:    i. e. , 

F = (1/8)   CDp D2 V2. (2) 

where   D   is the meteoroid diameter;    p   ,   the density of the material through which 
it is penetrating;    and CJ-J     ,   the drag coefficient. 

3. For V    less than 5 times the velocity of a plastic wave the penetration 
is given by one of the armor penetration formulae.    Again,   it should be noted that 
the mode of deformation for the meteoroid haa been specified a priori,   in this 
case zero deformation. 

Although the penetrat'on of a shaped-charge jet is not specifically applicable 
to the problem of meteorite penetration,  the impact velocities encountered approach 
10 km/sec during the initial stages of jet penetration.    Because the theory of jet 
penetration has been verified by direct experimental observations,   it is not inap- 
propriate to examine the physical  assumptions used to develop this theory and to 
note,  in particular,   the points at which the problem of meteorite penetration differs 
from that of a shaped-charge jet.     It was realized during the early 1940's that the 
dynamic pressure produced by the impact of a shaped-charge jet greatly exceeded 
the yield strength of the metals involved and a hydrodynamic theory was proposed 
by Pugh'3'.    The basic assumptions of the theory were: 

1. The target and jet behave as incompressible fluids. 
2. The flow is assumed to be in a steady slate when viewed from a frame 

of reference moving with the penetration velocity so that for the streamline along 
the axis of symmetry,   the stagnation pressure is given by: 

Ps = 1/2 Pt U2 = 1/2 Pj (V-U)2 (3) 

3. The penetration ceases when the jet velocity becomes sufficiently low 
that it cannot overcome the yield strength of the target material.    The last assump- 
tion was necessary because it was realized that shaped-charge jets contain a 
complete spectrum of velocities ranging from about 10 km/sec at the front to some- 
what less than 1 km/sec at the rear. 

In order' to apply the shaped-charge theory to hypervelocity impact problems 
it is necessary to modify the third assumption.    One could, for example,  assume 
that the projectile behaves as a short steady-state jet and that the penetration 

100 



INTRODUCTION 

ceases as soon as the rear surface of the jet comes in contact with the target. 
Under this assumption the penetration depth is given bv   P i/p i/p t   I  ■ 
where    t    is the length of the projectile.    Rostoker    ' estimated the mass of the 
meteorite that produced the Barringer Crater using this approximation.    However, 
he cautioned that his estimate should not be taken seriously because the assumed 
flow configuration would not necessarily be applicable to a meteorite.    It is im- 
portant to realize again that a specific flow configuration has been assumed. 
First of all,   the assumption of steady-state hydrodynamics,   which was known to 
be a good approximation for a long jet,  is questionable because a meteorite is 
sufficiently short,   relative to its diameter,  that a steady flow configuration may 
not be established.     More important,   it has been demonstrated,   at least for 
ductile materials,   that assuming the penetration to cease as soon as the trailing 
edge of the projectile reaches the target surface introduces a very large error. 
It is now apparent that a short hypervelocity projectile imparts a sizable quantity 
of kinetic energy to the target material which ultimately must be carried away 
from the target as thermal and kinetic energy of the ejecta or transformed to 
thermal energy of the target itself by various dissipative mechanism.    While the 
kinetic energy is being dissipated the crater continues to form by a process loosely 
described as secondary flow or cavitation.    Of course,   it had been realized that such 
an effect existed for shaped-charge jets,   but the contribution of the secondary flow 
to the total penetration could be neglected in comparison with the primary pene- 
tration predicted from equation (3). 

Thus far,   all approaches to the hypervelocity impact problem have been 
based on incompressible hydrodynamics.    However,   experimental work initiated 
in 1945 by Goranson ^ ' and his co-workers has yielded much information concern- 
ing the compressibility of metals at high pressures     '.    The theory of jet pene- 
tration,   which is based on incompressible fluid flow,   is obviously an approximation; 
and,   it is interesting to examine the degree of approximation involved.     Equation 
(3) provides a relation between the penetration velocity U    and the impact velocity 

V   .    The experiments reported by Eichelberger (9) have shown that this relation 
is a good approximation.     However,   the identification of l/2Pt U or l/2P-j(V-U) 
with the stagnation pressure is considerably less accurate.    Theoretical estimates 
of the effect of compressibility on the calculated penetration velocity have been 
made by Rostoker '^"' and perhaps others.    Some estimates based on the more 
recent Los Alamos data indicate that,   for- steady-state penetration of a tungsten 
jet into a lead target with a pc-netration velocity of 3. 26 km/sec,  the impact veloc- 
ity predicted from the incompressible theory will be 4 percent too low;    the stag- 
nation pressure,   22 percent too low;    and the stagnation density,   40 percent too 
low.    For hypervelocity impact in ductile materials,   the steady-state situation 
described by equation (3) is a small fraction of the process.    Therefore,   effects 
of compressibility can be expected to play a much more important role,   and may, 
in fact,   be a dominant factor. 

Further work on hypervelocity impact includes theoretical calculations of 
the initial pressure by Gilvarry and Hill ^^ in 195G.    Their calculations were 
based on a one-dimensional shock analysis using equation of state calculated from 
the Thomas-Fermi statistical model of the atom ^l2).    Unfortunately Gilvarry and- 
Hill did not proceed to develop the mechanics of the impact process,  but used the 
computed high values of the pressure and temperature as confirmation of the 
"explosion hypothesis"'13^ for the origin of the lunar craters. 
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The development of high-speed digital computers with large memory 
capabilities opened the way for calculations based on non-steady compressible 
hydrodynamics in more than one space dimension.    However,   it was soon dis- 
covered that shock discontinuities were very diffficult to handle even on the 
digital computers.    This major obstacle was satisfactorily overcome by the 
introduction of the Von Neumann-Richtmyer ^'*'   Q   method,   which introduces 
a pseudo-viscosity into the calculations.    By this technique the shock discon- 
tinuity is "smeared out" over a few mesh points and the computations are car- 
ried out using the resulting continuous functions. 

The first application of a hydrodynamic code to the problem of hyper- 
velocity impact was reported in 1958 by Bjork"^' who made computations of the 
craters produced by hypervelocily impact of steel projectiles on steel targets. 
It should be noted that this approach eliminates the basic objection that the flow 
pattern has been either partially or wholly specified a priori.    However,   the flow 
pattern has been specified to the extent that it must satisfy the differential equa- 
tions governing compressible fluid flow.    Perhaps the biggest unanswered question 
revolves around whether or not the shear strength and viscous forces are important. 
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MATHEMATICAL ME 1HODS IN THEORETICAL MECHANICS OF 

HYPERVELOCITY IMPACT OF METALS 

H.   G.   Hopkins 

The War Office 
Armament Research and Development Establishment 

Fort Halstead,  Sevenoaks,   Kent,   England 

INTRODUCTION 

The present series of Symposia on hypervelocity impact is characterized 
in a most striking manner by the variety of people taking part -- engineers,  physi- 
cists,  and mathematicians.    However,   this is by no means an uncommon situation 
in much of the current work in the general field of solid mechanics.      It is of course 
a matter not only of intrinsic interest but also one of great importance,   particularly 
for those who are responsible for the initiation and direction of research in the 
present subject,   to be aware of and to appreciate the individual contributions possible 
by people of differing expertise and also the complementary relations between these 
contributions.    Although I do not propose to discuss this matter,  generally,  I should 
like to direct attention to a particular aspect of it which I believe to be of crucial 
importance:    namely,   the place of mathematical methods.    Discussion of this ques- 
tion is not only worthwhile in itself,  but for my own purpose here it has the further 
merit of being the means of unifying the content of this paper as a whole. 

The paper is summarized as follows.    It gives a discussion of the place of 
mathematical methods in research into the theoretical mechanics of impact phe- 
nomenology of metals.    The relevance of investigations of nonlinear stress-wave 
propagation to the mechanics of hypervelocity impact is made clear.    In conclusion, 
reference is briefly made to some recent studies at A. R. D. E.   of stress-wave 
propagation,  which involve attention to rate-of-strain and nonlinear compressibility 
effects. 

PLACE OF MATHEMATICS IN SCIENTIFIC RESEARCH 

The place of mathematics in research into scientific subjects is often 
discussed,  but nevertheless I do not feel that any apology needs to be made for 
giving some attention to this question in connection with the special interests of 
this Symposium.    My concern is with applied mathematics rather than with pure 
mathematics,   when the former discipline is taken to embrace quite generally all 
attempts to further our understanding of a science by mathematical methods.    The 
essential difference between pure mathematics and applied mathematics is that the 
motivations and the objectives are different in the two cases,  but this does not 
imply any difference in the standard of the mathematics per se involved.    Naturally, 
the details of the approach made and the mathematics done vary widely with the 
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particular situation concerned,  but nevertheless some general remarks may be 
made on the broader aspects of the role of the mathematics that is undertaken. 
There are two categories of situations distinguished by whether or not a fundamental 
mathematical-physical investigation is demanded.    Thus,   the situation may merely 
necessitate the development or application of a well-attested theory,   such as elas- 
ticity theory.    On the other hand,   the situation may require the use of mathematics 
in first helping to understand the physical processes involved,   attention naturally 
being focused on the design of experiments and on the interpretation of data obtained 
therefrom.    This one is the more interesting and important,  and it therefore merits 
some further discussion. 

It is vital to recognize that experimental data bearing upon a physical situa- 
tion,   these data often being accumulated at the expenditure of much time and effort 
and money,   generally have no long-term value except when they are finally inte- 
grated in the form of sound theoretical treatments.    This remark is not to be taken 
to deny the fact that experiment is often not to be replaced as a means of answering 
some definite and specific questions.    However,   scientific progress is possible 
only when physical data are amenable to quantitative study,  and mathematics is the 
natural language in which to express and to develop the processes involved.    Thus, 
the essentials of the approach tc physical situations lie in the interplay between 
physical ideas and mathernatical methods -- the latter enable the former to be ex- 
pressed in a precise quantitative form,  and they may then be checked both theoreti- 
cally and experimentally.    A physical idea only becomes acceptable when this is 
done,  and then,  when cloaked in mathematical form,   it provides the basis of a 
mathematical-physical theory.    It now becomes possible to give attention to detailed 
theoretical examinations leading towards the derivation of specific results or pre- 
dictions.    Of course,   it may well happen that the mathematics required is too 
difficult:    in this event,   it is not possible to attack directly some situations of interest, 
and these must therefore perforce be studied indirectly,   often in terms of simpler 
but related situations.    If the procedures just described can be successfully carried 
through,   there is then confidence in applying a theory without the need to verify 
directly the results it predicts.    Thus,   the final outcome is a complete grasp and 
control of the physical situation with the allied result of being able to treat com- 
parable situations with economy of data and effort.    Clearly,   much depends upon 
the skill of the mathematician.    Engineering situations often involve a considerable 
degree of physical uncertainty as well as complexity,  and they are notoriously 
difficult to deal witis,    but mathematical investigations of such situations are still 
of the utmost value,  even when it is not possible to develope mathematical-physical 
theories of sufficient completeness. 

I have deliberately limited the foregoing discussion on the place of mathe- 
matical methods in scientific and engineering research,  only some of the more 
basic ideas being sketched.    However,   it may be noted that more extensive and 
highly illuminating discussion has been given by Lighthill (1),  Taylor (2),  and Biot 
(3),  whose papers have provided the main source of inspiration for my own re- 
marks.    I shall now pass on to discuss more specifically the place of mathemati- 
cal methods in studies of the theoretical mechanics of hypervelocity impact of 
metals. 
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HYPERVELOCITY IMPACT OF METALS 

The subject of impact in metals or other solid materials is extremely 
involved,  due mainly to the complexity of mechanical behaviour and to the large 
number of physical and geometrical variables.     At the Fourth Symposium, Hopkins 
and Kolsky (4) drew particular attention to the fact that hypervelocity impact 
results in the unsteady motion of the target and projectile materials occurring 
over combinations of fundamentally different physical regimes corresponding to 
different types of mechanical behaviour.    In brief,  hypervelocity impact is not a 
subject amenable to very precise theoretical treatment. 

In experimental work on hypervelocity impact,  there is still a need for 
collecting data on craters per se.    But there is a far greater need now for collect- 
ing data on the actual particle motions occurring in the development of crater 
surfaces and also on the stress pulses propagated outwards from craters into 
targets,   and more detailed studies of the permanent deformations surrounding 
craters would also be of much interest.    The entire situation is a complicated one, 
and it is far too involved to permit unravelling as it stands in the absence of basic 
data relating to the pertinent mechanical behaviour of solids which must provide 
the starting point for a study of the integrated phenomena as a problem in the mech- 
anics of continua.    However,  the experimental observations above could certainly 
provide a much improved picture of the events that take place,   and their analysis 
would give some guide as to the levels of stress-amplitudes and rates-of-strain 
and perhaps to the overall partition of energy that are involved.    It is possible 
of course often to correlate such data in terms of simple empirical formulae but 
this procedure in itself does not lead to improved physical understanding of the 
situation,  and in fact,   as I have already said,   these data have no real permanent 
value save when assimilated into a sound physical theory. 

Current progress in the proper interpretation and co-ordination of 
experimental data on hypervelocity impact is severely restricted by the almost 
complete lack of basic theoretical studies of the situation.    The general reasons 
for this circumstance are not far to seek,  and,   with their appreciation,  it be- 
comes possible to make suggestions for the lines of research that appear most 
likely to be needed to help to achieve progress.    Excluding certain aspects of 
material behaviour such as fracture and basic changes in metallurgical structure, 
problems of the mechanics of impact are described in terms of continuum theories 
for which the governing equations essentially represent the propagation of non- 
linear stress waves.    Effectively,   the physical and geometrical changes produced 
during impact are the result of the operation of complicated wave-type phenomena. 
Elsewhere (see Ref.   5),   I have discussed the present state of research concerning 
nonlinear stress-wave propagation in metals,  and I drew particular attention to 
the need for furlhei  work on the mechanical behaviour of metals under conditions 
of high rates-of-strain and high pressures.    Such work is needed to lead t- the 
construction of constitutive equations,  which characterize sufficiently well the 
mechanical behaviour of metals under these conditions;    and these equations are 
the most important single ingredient in continuum theories. 

It should be noted that the construction of constitutive equations is itself 
an area in which mathematical methods have an important role to play (see Refs. 
5 and 6).     Broadly speaking,   of the effects associated with high rates-of-strain 
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and high pressures,   it is undoLibleJly the former that are proving to be the more 
difficult ones to investigate in quantitative physical terms.    Rate-of-slrain effects 
are being actively studied (see,   for example,   Ref.   5),  but there are still very 
considerable practical difficulties associated with the design of adequate mechanical- 
testing techniques and with the proper interpretation of the data obtained.    For cer- 
tain metals at least,   there seems to be no reason to doubt that rate-of-straineffects 
are important even under quite moderate dynamic conditions,  but precise quantita- 
tive data and sufficiently realistic and general constitutive equations embodying these 
data can scarcely be said to have yet been obtained.    This is an important area of 
research in solid mechanics,  and I feel that much more attention needs to be given 
to it. 

The joint efforts of mathematicians and physicists may confidently be 
expected to lead ultimately to the construclion of realistic constitutive equations 
describing quite complicated types of mechanical behaviour for metals,  and indeed, 
this is well recognized to be one of the major objectives of plasticity theory (see, 
for example,   Ref.   7).    However,   the power of the mathematician (even with the aid 
of modern computers) to solve problems of continuum theories,   embodying even 
relatively simple constitutive equations,  is still limited to comparatively simple 
situations.    Unfortunately,   ii is not the case that hypervelocity impact is one of 
these situations.    The circumstance of axial symmetry (assuming that this does 
apply) itself represents considerable complexity (in comparison say with that of 
spherical symmetry),  and the presence of a deforming boundary is a major compli- 
cation.   It must therefore be recognized that a direct attack on the problem of crater 
formation is unlikely to be profitable,   and much more progress is likely to result 
from an indirect attack.    In my opinion,   the most promising line of attack is to 
discuss first problems of the dynamic expansion of spherical cavities,   and this 
appears to be quite feasible even when the assumed mechanical behaviour is 
relatively complicated,   e. g. ,   when shock waves occur (see Ref.   8).    The result 
of this work would be a very comprehensive knowledge of the mechanics of the 
formation of spherical cavities in extended and finite media under dynamic condi- 
tions,   which would,   of course,   include a quantitative assessment of the effects of 
high rates-of-strain and high stress-amplitudes.    This knowledge could then be 
applied to suggest simplified treatments of the problem of crater formation, which 
in turn could be applied to the quantitative analysis of hypervelocity impact data. 
All this may seem to some of you to represent a rather long train of thought,   but 
nevertheless the approach proposed does seem to represent a useful one for con- 
sideration at the present time.    The success of any proposed approach depends 
ultimately upon the evolution of a simplified theory of crater formation,   which is 
in accord with the salient known facts for hypervelocity impact,  and which enables 
predictions to be made,   particularly in respect of impact velocities higher than 
those that can be achieved at present under controlled laboratory conditions.    Of 
course,  one must be careful in adopting preconceived ideas in attacking a compli- 
cated physical situation,  but the approach (or one closely similar to it) that I have 
outlined should enable a correct physical picture of the mechanics of hypervelocity 
impact to be gradually built up.    1 have not discussed approaches has   i upon fluid 
mechanical behaviour of the projectile and target materials,  but their status is 
likely to resemble that of corresponding approaches made in the early wi "k on 
shaped charges (see Ref.   5). 
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STUDIES OF NONLINEAR STRESS-WAVE PROPAGATION 

The foregoing discussion should,  I  think, have made clear the importance 
of studies of the propagation of nonlinear stress waves and of studies of the mech- 
anical behaviour of metals in situations which are comparable in their time-scale 
with that of hypervelocity impact.    It is appropriate therefore now to mention 
briefly some recent work of this kind that has been done at A. R. D. E.    This work 
is of course of general interest in the mechanics of solids. 

First,   Kolsky and Douch (9) have made certain experimental studies of 
plastic wave propagation in specimens of pure copper,  pure aluminium,  and an 
aluminium alloy.    They employed modified Hopkinson pressure-bar techniques, 
and the experimental data obtained we    . used to construct dynamic stress-strain 
curves,  which were then used to test the   'alidity of the rate-of-strain independent 
theory of longitudinal plastic wave propagation due to G.   I.   Taylor,   Th.   von Karman, 
and H.  A.   Rahmatulin (see Ref.   5).    Second,   Tupper (10) has made a theoretical 
study of the propagation of p. t.ie stress waves through a steel plate,   of finite thick- 
ness but otherwise of unlimited extant,  following the detonation of a uniform slab 
of high explosive placed in intimate contact with the plate.    His study involved 
consideration of the nonlinear compressibility of the plate material under high 
pressures,  and attention was given to the reflection of stress waves at the rear 
face of the plate. 

Both the above studies are too detailed, in respect of either experimental 
or theoretical considerations, for it to be possible to give further adequate sum- 
mary and discussion here. However, the important point to which I wish to draw 
attention is that a careful examination of the procedures followed in these studies 
shows clearly that mathematical methods are essential in attempting to elucidate 
the mechanical behaviour of metals when the physical situation unavoidably in- 
volves inertia effects associated with the propagation of stress waves. 

CONCLUDING REMARKS 

In this paper,  I have attempted to give a rather brief discussion of the 
place of mathematical methods in the theoretical mechanics of the hypervelocity 
impact of metals.    In particular,  attention has been directed towards the rele- 
vance of studies of nonlinear stress-wave propagation.    For such studies,  a 
prerequisite is adequate knowledge of the nonlinear mechanical behaviour of 
metals,  this being incorporated into constitutive equations of sufficient realism 
and generality.    This is a central field of work in the mechanics of solids,  and 
many applied mathematicians are becoming increasingly aware of the importance 
of this field,  which seems likely to receive much attention in future research. 
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N.   Davids,   Y,   K.   Huang,  and W.   Jaunzemis 

The Pennsylvania State University 
University Park,  Pennsylvania 

1.    INTRODUCTION 

Spatial Distribution of Cratering Effects 

This paper offers some theoretical models of hypervelocity impact in order 
to investigate the penetration of metal projectiles into metal targets.    The phenom- 
ena,  and hence their analysis,  are complex because different effects predominate 
in different parts of the crater.    Thus,   in a zone ahead of the projectile,   the tar- 
get material is under ultra-compression.    This zone is bounded in front by an 
advancing shock wave and gradually shades off at the sides into another zone where 
the material,  in some slate of fluidity,  deforms sideways along the crater.    Ulti- 
mately,  as the angle of deviation from the direction of impact is increased,   the 
material has undergone permanent plastic deformation and hills up to form the lip 
of the crater.    The zones described are depicted in Figure 1.    The transition 
between the two zones is not meant to be exact in such a schematic picture. 

As a first approximation,   the impact crater will be considered to be hemi- 
spherical,  as shown in Figure 2,  and a simple model of spherical flow will be 
adopted.    The direct, aim of any penetration theory is,  of course,  to predict the 
shape and size of the crater.    The spherical flow model does this by analyzing the 
state of the material in Zone I of Figure 1,   (taking   ß    - 90 degrees) and leads to 
a value for the diameter and volume of the crater comparable with experimental 
data. 

The flow effects in Zone II (Fig.   1) will be investigated by introducing a 
second model of axisymmetrically spherical flow.    This naturally involves one 
more space variable in the basic equations,  which means more mathematical 
complexity than that associated with the first model.    However,   we are in a position 
to be able to reach results which kinematically   account  for the formation of the 
crater lip. 

2.    SPHERICAL  SHOCK WAVES 

Distribution of Effects in Time 

Just as the study of the problem is conveniently divided into zones,  we can 
divide up the sequence of events in the cratering process for detailed analysis. 
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r radius (r = a when t = 
0 co-latitude ( 0'= b wh 
t time 
u particle velocity 
a acoustic velocity 
c shock wave velocity 
m mass flow rate 
M momentum 
M* impact Mach number 
E energy 

List of Notations 

p pressure 
t = 0)      y adiabatic index 

0 progressing wave exponent 
ß ditto 
S ditto 
e ditto 
^ progressing wave parameter 
U progressing wave function 
D ditto 
P ditto 

d =   d 
i.    Initial State - here the projectile at impact becomes imbedded just 

inside the target material and generates a region of excessively compressed 
material.    The problem is to determine the nature of this zone. 

ii.    Expansion State - the compressed material,  which might be in some 
state of fluidity and act in a manner similar to an explosion,  expands further into 
the target,   generating shock fronts and forming the crater. 

iii.    Final Phase - the shock wave decays,  permanent deformation at the 
crater stops,   secondary deformations appear at the back or other parts of the 
target.    The main problem is to determine when this phase begins. 

Of course it must be understood that these phases are not distinct events, 
nor may it be even possible in a given case to make the separation. 

3.    THE INITIAL STAGE 

Fluid Impact 

We lack direct data on the initial stage of crater formation.    Headington 
and Jaunzemis   '"' have made an analytical investigation of this stage based on 
the conservation laws and the known equations of state of the materials.    Such a 
detailed study provides the initial and boundary conditions required for the ex- 
pansion stage.    However,  we shall here make simpler assumptions about the 
initial stage during which the projectile becomes imbedded in the target material: 

a) The impact is so rapid that the time required for the compression 
pressure to reach its maximum is negligible.    This means that the problem may 
be treated essentially as one of an explosion at the impact center. 

b) The shock-compression process is adiabatic. 

c) The pre-impact shape of the projectile is unimportant for the case of 
semi-infinite target here. 

These assumptions lead to the so-called "ballistic" model of fluid impact. 
See Charters and Summers ^•:i'4'.    Here it is supposed that immediately on impact 
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the projectile and some of the target material are converted to a fluid shell under 
ultra-pressure which propagates radially.    In this analysis,   however,   we shall 
remove the assumption that the fluid shell be uniform -- part of our effort will be 
to determine the pressure profile and velocity distribution in it as functions of 
radius. 

4.    THEORY OF PROGRESSING SHOCK WAVES 

We have previously,   in Figure 1,   considered the different angular zones 
in cratering.    If we restrict the problem to spherically symmetric forces,  and 
hence to radial velocities,   we simplify it to a point capable of theoretical analysis. 
However,  since edge effects are being neglected the results will be limited to 
some angle less than 90 degrees from the normal. 

Our model is related to that of a spherical blast wave in a gas and may 
make the following assumptions about the medium during propagation of the shock 
wave; 

a) Changes of state are adiabatic,  or entropy is constant, along a particle 
path. 

b) The medium is a compressible fluid,   with shear effects neglected. 

c) The entropic equation of state is such that the pressure is a function 
of the density alone,   i. e. ,   the medium is also barotropic. 

d) We also have two alternative possibilities,  namely,  constant total 
energy or constant total momentum for the cavity expansion process. 

5.    THE BASIC EQUATIONS FOR SPHERICAL FLOW 

The conservation of mass,   momentum,  and entropy may be expressed as 
follows; 

iu. + uiu. + _Lie. _ n                                  (5.i) 
at + ar      ? dr - 0 

te + UÜL + pÜL+lilfi^n                                             (5.2) 
at ar        ar        r      u 

with the equation of state 

U.p,p) = pp~r = A = const. 

where     7     is the adiabatic index for a barotropic medium. 
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6.    PROGRESSING WAVE SOLUTIONS 

We shall use a known general method which reduces the above basic 
equations to a succession of ordinary differential equations.    By assuming a 
specific form for the equations,  a set of particular solutions depending on one 
variable will be obtained.    These are called "progressing waves" and are ex- 
pressed in the form (1). 

U = t^LKC) 

fi- = t*C2P(C) 

(6. la) 

(6. lb) 

(6. 1c) 

ith   C = rt" /here'a   ,   ß    , S are parameters,  and U,  D,   P functions 
to be determined.    By introducing the variable we have defined geometrically 
a family of surfaces    ^   = constant in the (r,t) plane,   which play an important role 
in the analysis.    Although these are not the trajectories of the particles of the 
medium,   we shall see that the shock front belongs to this family of surfaces. 

We now explore these solutions mathematically by substituting the expres- 
sions    (6. 1)   into the equations (5. 1) through (5. 3),  giving respectively: 

et* l{/3U-a(U+CU,) + (U+CU')Ut0-o+, + (2P + eP,+ Cpg)t*-''-/3+i}=o (6. 2a) 

t8-'{sD-aCD'+tp-a+l[3DU+C(D'U+U'D)l}=0(6 2b) 

C2t<+8-'{rP(SD-oeD')-[DP(S+e)-a(2DP+CDP'+CPD')l- 
(6.2c)     . -Ul0~a+'[(2DP + £DP'+CPD')-yCPD']}=O 

The sense in these equations is that it is possible to eliminate the explicit factor 
t   by properly choosing the exponents,  thereby leaving a system of functions of 
one independent variable   f   ,    This is accomplished by letting 

€=2/3=2(0!-|) (6.3) 

sothat ^-«"-'^-ß-a-H-, and,  after dividing by        Ct0-1,!81,! -1   ,S-l+c 

which are not zero for     t>0      ,   we then have; 

114 



THEORETICAL MODELS 

/3U-a{U + CU') + U(U+eU') + {2P + CP' + CP^) = 0       <6.4a) 

SD + CD'(U-a)+D(3U+fU')=0    (6.4b) 

CP'(U-a)+p[2{U+/3-a)-S(y-|)]-^P(y-|)(U-a)^ = 0    (6.4c) 

We now have a system of ordinary differential equations for the unknown 
functions U(C),D(0|P(0 a™1 two free parameters   a    and   8 
The substitutions (6. 1),   which may appear artificial,  are thus justified. 

We shall now reduce the number of variables further.    Solving (6. 4b) for 
CD'/D       gives 

>D: = _8 + 3U±£Ll ..  ,. 
4D U-a (6-5) 

When this is put into the remaining two equations,   we obtain; 

/3U+CP'+(U-aXU+CU') + P(2-^±g!4j£L!')=0   (6.6a) 

2/?-S{y-|) + 2{U-a)+C(U-a)£+(y-l)(S+3U+CU')=0  (e. 6b) 

These equations (linear in ^U   and  {P ) may be simultaneously solved,   giving 

^u = ,_ -U(U-|)(U-a) + P(S + 2/3 + 3yU) (6  7a) 

{ü~ar-yP 

cp' = Pl\J(U-\){y-\) + ([J-a)[2-ö{ly-\)]+p[2y+Zß u^^X 
I nl_-^2_.^, / (U-a)' 

From these we obtain 

ÖE = pf2a + U(a-3)H-yU(2U-3a^l)-p[2y+2^U
S-^   % 

oU    Kl U(U-|)(U-a)-P(S + 2ß+3vU) J 

(6.7b) 

(6. 8) 

This is the basic differential equation for progressing waves.    After the appro- 
priate solution has been found for   P = P(U)    .  the function    C=C(U)      is found by 
a quadrature of (6. 7a) and the density function    D(C)    .   from (6. 5). 

These piogressing wave solutions,  as we shall see,   provide a general 
mathematical description of an expanding cavity reasonably consistent with the 
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given conditions of initiation of the process.    There remains the problem of 
choosing the two parameters   a     and    ^ 

7. BOUNDARY CONDITIONS AT SHOCK FRONT 

We shall narrow down the number of parameters by examining the com- 
patibility of our solution with the Rankine-IIugoniot conditions across a shock front. 
If the undisturbed and disturbed medium parameters are   u0,    p0,    p0    and   u^, 

p . ,   p.    respectively and the shock wave velocity is     c   then these relations are: 

/'.(u0-c) = /o,(u,-c) = m (7.1a) 

yolU,(urc)-^guiu0-c)=p)>-pi (7.1b) 

2 2 
/o,(u,-c)(e,+ -^)-/>>.-c){e0+-^ )=p0u<(-p,u, (7 lc) 

where     p = •:—<-  

When the undisturbed medium is at rest,   with   u0 =    P0   -   0,  these reduc( 
to: 

Pl(c~u)-Poc=0   . (7.2a) 

jD.u.ic-UJ-pr^O (7.2b) 

•2       J> /'.(c-u.Kf+ ^f^;)-p,u,= 0 (7.2c) 

Since        fr=rt_a      along the shock front,   so c = 2L = a i-= (j^j0-1 

From (6. 1) and (6. 3) with   C - U,= ^tß(a-C.U) .  equations (7. 2) 

become; 

tS+^P{a-CU)-a^,t0=O <7-3a) 

t8 + ^{u(a-eU)-P}DC2=0 (7.3b) 

t8+3/3{(a -C,U)(.IU2+ ^_)_pUJDCi3 = o (7  3C) 
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To secure independence of   t   in these equations, it is necessary to make: 

S=0 (7.4) 

With this condition and the relation (6, 3), the assumed form for the pro- 
gressing waves reduces to; 

r (7.5a) 
u = J|-U(C) 

P = DU) (7-5b) 

R = (J-)-HO (7.5c) 

P = {f)2P(C)D(C) (7.5d) 

with    f =:rt_a      .    These solutions show that on the shock front or free surface, 
where ^   is constant,  the physical quantities such as velocity,  pressure,  density, 
and wave velocity are constant on the rays   r/t = constant. 

8.    ENERGY CONDITION 

The assumption of constant total energy for the.cavity expansion process 
is now made,  provided that certain secondary effects are neglected.    With     £=£ 
representing the shock front at time   t,    the total energy in the fluid shell is 
given by 

E(t) = 2Tr[
r(^PU2 + ^rT)r

2ar 
(8. 1) 

where        f, ~ Cita an<^ ii:=:£0t
a are ^e shell radii shown in Figure 2. 

Substituting (6. 1),     r —^t ,   and      (3r = tad^ for given   t,  the energy 
expression becomes: 

E(t)= 27rt8 + 5a-2/£,(iU2 + -eT)DC4<3C (8. 2) 

Since the integral is independent of   t,    we make the energy independent of time 
by satisfying the condition 8 + 5a-2 = 0 From (7.4)   we obtain 

_ 2 
a"T (8.3) 

ß = -% (8.4) 

e = -i- (8.5) 
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9.    EQUATION OF STATE FOR IRON 

From data given by Walsh, Rice, McQueen, and Yarger, ^' the equation 
of state for iron can be formulated through Figure 3. It fits a polytropic law of 
the form (5. 4),  for two ranges of pressure; 

a)   Intermediate pressure range,   . 76  T V/V0 < . 85 

pp  l6 = l.3X|0"13 (9. la) 

b)   High pressure range,    . 85 <  V/V0   <:  . 98 

P/o"9 = 6.9X|crr (9.1b) 

where   p   is to be measured in kilobars (10    dynes per sq. cm),  and   p   in grams 
per cu.   cm.    Below about 80 kilobars we have a transition to elastic or elasto- 
plastic behavior.    The nature of this transition is considerably uncertain and will 
not be discussed here further.    Unlike gases,  the high value of   y   (i.e. ,  the 
comparatively small changes in density) shows up in that we do not have the strong 
shocks present as with gases,   when the density changes by a factor of about 6. 

10.    P-U DIAGRAM FOR IRON UNDER PRESSURES IN INTERMEDIATE RANGE 

If we assume constant total energy for the cratering process,  the 2/5- 
power law holds and,  with   /  = 16 and the numerical values given by (8. 3) through 
(8.5),   the differential equation (6. 8) becomes: 

A. 
U(U-0.4KU-|H.2P(40U-I)   J (10-1) 

iB = 2P|0-4 + U(!6U-2.9) + P(^g-l6)]. 
^U ••    I Ifll-n 4VI l-il-i 5Pf,ani I-I\   J 

A family of integral curves are sketched in the vector field of Figure 4.    The 
vectors are oriented with slopes calculated from (10. 1) on a grid network for 
U = 0 to 0. 05.    Certain portions of the diagram have been amplified in finer 
intervals,   in order to determine more accurately the initial behavior of the solu- 
tion curve. 

One type of solution is obtained by starting from the shock front and apply- 
ing the known shock transition relations for pressure,  density,  and velocity.    If 
we consider a small surface element of the shock front,   we can neglect the 
sphericity in its immediate neighborhood and obtain the transition relations giving 
pressure,   density,   and velocity immediately behind it. 

Equations (7. 2) may be written; 

c    u'_ p, c (10. 2a) 

C"U'=^X (10.2b) 

P.U. 
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IMPACT 
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FIG.2 SIMPLIFIED HEMISPHERICAL CRATER 
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Combining (10. 2b) and (10. 2c) gives        u(=   /2fii ;   (10.2a)   then gives v'>y-l)/3, 

C = a-'ptUi Equating (10.2a) and (10. 2b) gives P^C/OoU, which 

£L - y+l                                p      v-1       /)» 
then leads to p0     y-\ Let    n-    =   ' xi p       >  'hen 

U1=c(l-f') = c(l-/x2) Ü0. 3a) 

p,= Cp,U,= pocH\-fJ.Z) (10. ?.b) 

a=V/^=C/iV^>2 (10.3c) 

The last expression is obtained from the entropic equation of state (5. 4) and is 
conventionally referred to as "acoustic velocity" in Gas Dynamics. 

Since   C = C,    on the shock front,      c = d r/dt =    a r/t   and,   from (7.5), 
we get: 

U(0 = a(l-/i2) (10.4a) 

D(0=—2 (10.4b) 

P(0 = ay(l-M
2) (10-4c) 

just behind the shock.    The right side of (10. 4a) and (10. 4c) represent a definite 
point in the   P - U   plane,  through which a particular solution curve is deter- 
mined.     We may refer to it as our "starting point, " and proceed to draw the 
particular solution curve.    It should be noted that the constant   ^p     ,  still un- 
determined,   is not needed here.    For iron with   Y = 16.   H-    =0. 939,  and   a- 2/5, 
the starting point is located,   in Figure 4,  by    U ( ^   ) = 0. 04758 and P( ^   ) = * 
0.01661. 

11.    DETERMINATION OF   £    and   D    FUNCTIONS 

Having determined the function   P(U)   as given by the solution curve in the 
F - U   diagram,  we have effected one quadrature.    We now perform a second 
quadrature by referring to the differential equations (6. 5)   and (6. 7a).    In both of 
these the variables are separated,  so a straightforward procedure leads directly 
to the   $   and   D   functions,  shown graphically in Figure 5. 

It should be noted that  ^  is determined to within the multiplicative constant 
^ „  its value at the shock from.    From the differential equation for the density 

function,  we see that  p also admits of a free multiplicative constant   p = p,    ,  just 
behind the shock front.    This value is given by       „ —J3" = gq nm/rm3 

3 '    ^ for iron with   p»     - 7. 84 gm/cm  . 
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FIG.5    PROFILES OP DENSITY AND   %   PARAMETERS 

From Figure 5 we see that the density of the material decreases after the 
shock front has passed,  at first rapidly,   then it levels off until   U = 0. 341,   where 
it falls so rapidly to zero as to create almost a discontinuity there.    The same 
occurs with the ^   function.    The interpretation is this.    Since £   decreases with 
radius   r   when time   t   is held constant,  the curves show that the density drops 
behind the shock front very rapidly at first,   while the velocity increases.    Ulti- 
mately there is a sudden density drop to zero,  indicating a rather sharp boundary 
from the material to free space.    In Figure 5 this is at   U = 0. 341,  which would 
represent the crater boundary on the basis of the theory worked out here from the 
polytropic law.    Unfortunately we can not use this discontinuity,  as the computed 
density of the material has by this time dropped considerably from its free space 
value   pm Since there is no evidence that any solid in these processes ever has 
a density less than   P»   ,   we must find a way to deviate from the polytropic law at 
low pressures.    The simplest way is to level off the density ai   p = p9    .    The 
effect of this will be examined later. 

12.    THE PARTICLE TRAJECTORIES 

In order to study the transient motion of the crater surface,  there remains 
only one more construction to be made,  i.e. ,   that of   r - t   plane,   showing the 
particle trajectories.    (By "particle" we mean macrosropically all the particles 
on a shell surface of radius   r. )    From (7. 5a) a vector field can be constructed on 
the   r - t   plane.    Thus Figure 6 was made by substituting data for   U( ^ ) in 
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Figure 6.   Motion of Fluid Shell and Crater Surface on 
r-t Diagram for Impact at 20,000 fps 
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FIG.7 PRESSURE VARIATIONS ON FLUID SHEIX 
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dr/dt = u{r,t) =   U( $ ),    C  = rt       .    It is convenient,  because of the factor 

r/t,    to plot the vectors along rays   r/t = constant. 

It is interesting to note that the shock front path is determined by the 
equation   r =     i,t  '   ,   with      {, yet to be determined.    The pressure release line 
is given by   r =  0,704     S,t^'^, showing.the motion of the trailing surface.     Finally, 
the crater surface is determined from volume conservation of the fluid shell en- 
veloped by the shock front and trailing surface. 

13.    THE PRESSURE VARIATION 

From Equation (7. 5d) we see that the pressure variation in the medium 
shows the same discontinuity at the crater surface as the density function does. 
Inside the  medium,   the pressure,  as given by 

p = (-f)2(.0004V1C,2 (13.1) 

is characterized by a non-zero variation,   shown in Figure 7.    This violates the 
constant energy condition (since some work is continually being done at the bound- 
ary due to the non-vanishing pressure),   but it shows approximately the impulsive 
type of pressure to fit the impact problem.    On the other hand,  just beyond the 
jump,  the vanishing of   D   function gives us zero pressure as the constant energy 
condition requires.     We may regard this properly as a "free" surface. 

The only way to come out exactly with a free surface,   without having the 
discontinuity in pressure as just described,   is for 'he solution   v   curve in Figure 
4 to terminate at   U = 0. 4   and   P = 0.    As the plottir^g of Figure 4 is very sensitive 
to the initial conditions,   we can not say now for sure whether failure to reach this 
end point is due to inaccuracies,   or whether the initial conditions need to be changed 
slightly.    However,  our solution approaches the required point closely enough to 
delineate the crater surface behavior,   which is hardly sensitive at all to this dis- 
crepancy. 

Physically,  the pressure drops very rapidly with decreasing radius from 
the shock region.    We are uncertain just how or just where it drops zero because 
we are neglecting the departure of the material from the polytropic law at low pres- 
sures.     This does'not appear tu matter too much in locating the locus of the crater 
surface. 

14.     NUMERICAL RESULTS FOR STEEL-TO-STEEL IMPACT 

We shall apply the foregoing analysis to an example of steel-to-steel impact. 
Consider a steel pellet 3/16 inches in diameter striking a thick steel plate with a 
velocity of 20,000 ft/sec.    This velocity,   which happens to be especially critical 
for terminal ballistic effects     ',    represents a Mach number    M* = u/c =  1.025 in 

•3 

steel.     With   p'   - 7. 84 gm/cm   ,  the impact energy of the projectile is: 

E = ^(0.443 gm)(6.|X|05cm/sec)2 = e.25X|0l0ergs 
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If all this energy goes into the shock wave (no loss),  the integration of (8. 2) 
comes out to be: 

E = 27r(3.8xio"4)yDlC,5=8.25X|o|0ergs 

Substituting        H'    ^   = 8. 9 gm/cm    gives    ^  = 329 cm/sec   '.    The pressure 
behind the shock front is given by: 

P = l,6Xlcr5r6/5     kilobars 

with   r   in cm and   t   in sec.    Thus,    p = 582 kilobars at   t = 1/2 microsecond; 
p = 254 kilobars at   t =  1 microsecond.    These show that the high pressure regime 
is over in about 1 microsecond (during which the crater is being formed and the 
material might be in some state of fluidity). 

Figure 6 is a plot of radius versus time,  showing the motion of the shock 
front, trailing surface, and some of the particle paths.    We note that after the 
density has fallen to its free space values,   the particles at the trailing surface still 
have a residual forward motion,  which is effectively over at most by 10 microseconds. 
The crater surface is stopped at the value   r = 0. 37 x 10'2     C,   = Cm' 

Following the-notation of Charters (3), (4)   ancj 0f Partridge*'' ,  we get p/d = 
1. 63 where   p =  1. 2 cm = penetration depth,    d = 0. 738 cm = projectile diameter. 
Referring to Charters' curve of   p/d   versus   V/c   (where V = velocity of the pro- 
jectile,    c = sound velocity),  this point lies on the fluid impact curve (cf.   2/3-power 
law of Figure 8 in this paper).    The experimental points for steel-to-steel impact, 
as obtained at the University of Utah,  do not conform to the 2/3-power law.    How- 
ever,  these points only go up to an Impact Mach number of 0. 5.    Our constant total 
energy analysis provides a 2/5-power law,  with comparable results shown in Fig- 
ure 8. 

15.    FURTHER REMARKS 

The foregoing analyses appear to give reasonable results,  in spite of the 
many assumptions needed and uncertain values of the parameters required.    For 
the steel-to-steel impact at 20,000 ft/sec,  the crater is formed in about 1 micro- 
second.    The pressure is a maximum just behind the shock front.    There is then 
a trailing wave in which the pressure drops rapidly.    Just at crater,  the material 
has been decompressed.    From Figure 6 we see that the shock front starts out at 
about the impact velocity and slows down to the elastic wave velocity during the 
first microsecond,   while the crater surface penetrates at a much slower speed. 
An interesting side feature is that if we had allowed the pressure-release line to 
stop suddenly at 1  microsecond,  as marked by point   A   in Figure 6,  we would 
come out with about the same value for the crater radius. 

16.    MOMENTUM CONDITION 

If we base the progressing wave solutions on the constant total momentum 
instead of constant total energy condition,  a different set of values will be obtained 
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for the parameters   a,,   ß   ,   8  , and < .    The axial component of momentum of 
the moving shell is given by: 

M(t)= Zirj j pu cos 9-r2sinÖ do dr = TrJj*+PVUirzdr 

With   r^t" ,      dr=t <3C ,  this becomes: 

(16.1) 

,-ir£. 
M{f) = 7rt8+4a'lrDUC3aC 

IE. 

(16.2) 

4.. 

3 

.1 

EXPERIMENTAL POINTS 
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EXPERIMEWTAL DATA FTIOM UNIVERSITY OP UTAH 
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P.Vt. 

riG.»     f-V  OIAGRAK   rOA   PHOGRRSSINC  *WS  ON   Tiff.   BA-SIS   OP  TONSTANT   MOHTNTVI: 
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so that,   from (7.4),  time independence requires 4a_l = 0.    Hence 

a = -4 (16.3) 

ß^--^ (16.4) 

€ = ~ 2 (16. 5) 

Thus,  a 1/4-power iaw holds for cratering process with momentum conserved. 

It is of interest to examine the behavior of the material in the high-pres- 
sure range,   with    X =  9.     The basic differential equation (6. 8) then becomes: 

<*J L U(U-l)(4U-l)-6P(l8U<    J (    • ^ 

from which the    P -  U   diagram of Figure 9 is established.     Here we obtain the 
Particular solution curve, with the starting point given by  U(^ ) = 0. 05 and  P(/) = 
0. 01.    It should be noted that this solution curve tends to end at the origin.    This 
results in some uncertainly in the determination of  £   and   D    functions (beyond 
the limits    U <  0.015    and    U >  0.05,    see Fig.   10).    In this conne'ction,   the 
motions of the shock front and trailing wave have not been understood so well as 
to reach any crater size from the  1/4-power law.     Yet we would not draw any 
conclusion here,  although it is interesting to note that crater formation depends 
on the absorption of impact energy while the transfer of momentum effects rupture 
of the projectile and target. 

17.     THE AXISYMMETRIC FLUID IMPACT 

So far,   the edge effects of cratering have been neglected;    further progress 
in the analysis of crater formation requires this to be taken into account.     Let us 
consider the axisymmetrically spherical flow of an ideal fluid.    The governing 
equations,   as expressed in terms of Lagrangian material coordinates,   are: 

(17. 1) 

(17. 2) 

(fe^-ÄVr2sine = poa2sinb (17.3) 
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where   a   and   b   are the initial material coordinates.    Semi-inverse methods 
have been employed to consider motions of the type:    r = r(a, t).    The continuity 
equation (17. 3) then becomes: 

^r2sinö^^=/5oa
2sinb (17.5) 

For incompressible fluids,    p   is readily eliminated from equations 
(17. 2).    Motions of the type   r = r(a, t)   are then defined by: 

r2|ä=T(t)0(e) (17.6) 

/2       2 
where     T(t)   and       0 (9) are arbitrary functions.    Integrating this for r—

-N/
a +-L 

T(t) = kt,  and      0 (Ö) = Sin Ö ,   gives     9R;2 tan'l(l +-'-g)    .    jvided /a< <l(with b = 

./2   ).    This particular solution shows up the deformation pattern of the surface 
layer of material (Fig.   11).    It is to be noted that appropriate pressure boundary 
conditions are not satisfied here.    Up to this stage of the study,   we have attempted 
to account for the sidewise flow of crater formation,  in the sense of a kinematic 
prediction only. 

FIG.11    CRAITO SHAPE PNRDICITD DY ANALYSIS 

OF AXISYMIETRICALLY SPHTOICAL FLOW 
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18.    CLOSURE 

Generally speaking,  the progressing wave analysis appears to give 
promise of reasonable agreement with experimental values.    It also indicates an 
approach in favor of the dependence of crater formation on energy absorption. 
Yet the theoretical models proposed have to be referred to their pertinent govern- 
ing effects,   in order to avoid misunderstanding. 

REFERENCES 

1. Courant,   R. ,  and Friedrichs,   K.   O. ,     Supersonic Flow and Shock Waves, " 
Interscience Publishers,   1948. 

2. Walsh,  J.   M. ,  Rice,   M.   H. ,   McQueen,   R.   G. ,  and Yarger,   F.   L. ,   "Shock 
Wave Compressions of Twenty-Seven Metals,"   Phys.   Rev.   108 (1957). 

3. Charters,  A.   C. ,  and Summers,   J.   L. ,   "Some Comments on the Phenomena 
of High-Speed Impact, " Decennial Symposium (1959). 

4. Charters,  A.   C. ,  and Summers,   J.   L. ,   "High-Speed Impact of Metal Pro- 
jectiles in Targets of Various Materials, "   Proc.   Third Symposium on Hyper- 
velocity Impact (1958). 

5. Headington,   E. ,  and Jaunzemis,   W. ,   "Large Amplitude Waves Generated by 
Pressure Pulses,"   Pennsylvania State University (unpublished). 

6. Rogers,   W.   K.,  Jr. ,  and Vikestad,   W.   S. ,   "Hypervelocity Impact by Collision 
of Two Projectiles, "   BRL Tech.   Note 1337,  Aberdeen Proving Ground,  August 
1960. 

7. Partridge,   W.   S. ,   Van Fleet,   H.   B. ,  andWhited,   C.   R. ,   "An Investigation of 
Craters Formed by High-Velocity Pellets, ''   University of Utah Contr.   AF. 
18(600)1217,   Tech.   Report OSR-9. 

132 



SESSION   III 

THEORY 
(continued) 

CHAIRMAN 

DR.     H.     G»     HOPKINS 

ARMAMENT   RESEARCH   AND   DEVELOPMENT 

ESTABLISHMENT,    UNITED   KINGDOM 

133 



CHAIRMAN'S REMARKS 

I should like to thank Mr.   F.   E.   Howard for his kind remarks intro- 
ducing me as the Chairman of this Session. 

There is little that I wish to say at the beginning of this morning's 
session on theoretical work relating to hypervelocity impact.     However,   I will 
draw attention to the fact that among the papers to be presented is one by 
A.   E.   Olshaker and R.   L.   Bjork of the RAND Corporation;    in view of Dr. 
Bjork's earlier important work,   I feel sure that this paper will be awaited by 
us all with much interest. 

1 have noted that different authors are using different systems of 
dimensional units in their papers presented at this Symposium.    This practice 
is likely to cause unnecessary confusion,   and I therefore wish to suggest that 
it would be worthwhile for some definite ruling to be given on the correct prac- 
tice to be followed in the future. 
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T.   D.   Riney and P.   R.   Chernoff 

General Electric Company 
Philadelphia,   Pennsylvania 

INTRODUCTION 

When an ultra-high-speed projectile strikes a target a strain-rate which 
depends on the impact velocity is imposed on the projectile and target materials. 
The resulting flow of the materials will be resisted not only by the inertial forces, 
but also by the dynamic yield strength of the materials and by viscosity stresses 
with magnitudes which depend upon the strain-rate.    The only serious attempt (1) 
to calculate the phenomenology of hypervelocity impact from basic principles has 
considered the medium to be a perfect fluid and,   consequently,   neglected the 
strength and viscosity effects.    Since the predictions from the perfect fluid model 
are found to differ with the extrapolated results of hypervelocity impact tests, 
one is led to consider  the problem anew in order to formulate a mathematical 
model which takes into account the inertial,   viscous,   and strength effects. 

VISCO-PLASTIC MODEL 

Such a plastic solid (exhibiting visco-plastic flow) is most simply represented 
by a Kingham model.     The material is considered rigid if stressed below its yield 
strength,   whereas above this value the material acts like a Newtonian viscous 
liquid;    a schematic representation of such a material is given in Figure la.     In 
simple shearing flow,   in which the velocity is   q (y),    and   dq/dy    is a constant D, 
this means that 

o      o o 

0 = 0 (M<'0). 
(1) 

where "'Q   is the yield value of the shearing stress and  ^o  Is a constant.     These 
equations may be written in the form 

T =ii (D)   D , (2) 
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where the strain-rate dependent viscosity coefficient        M =\i (D)      is given by 

(3) 
( |TI<T0)  • 

This dependence of   M    on   D   is illustrated in Figure lb.    The viscosity coef- 
ficient decreases with increased strain-rate. 

In order to extend this idealized visco-plastic model to a material sub- 
jected to hypervelocity impact the stress versus strain-rate relations,   (2) and 
(3),  must be generalized.    As formulated above,  only the properties of the material 
in simple shear flow are defined;    corresponding relations for three dimensional 
flow are required.    The expressions will be somewhat simplified by assuming that 
the projectile is axisymmetric in geometry and that it strikes a semi-infinite tar- 
get normal to the axis of symmetry.    Furthermore,  the angular momentum of the 
projectile is assumed to be 2ero at impact.    Under these hypotheses the total stress 
tensor becomes (2,3) 

Tik  --PSik+uPft "^dlvq  5lk) 
(4) 

where the viscosity    M   is of the form (3) with   D   defined in terms of the strain- 
rate tensor   Djjj according to 

D2 = D
r

2z+i<D
r

2
r 

+ D
e

2e+^    -T^)2 (5) 

and the flow criterion is givon in terms of 

2 '\z  *ihrr-*)2+{^-p)2  + (Tzz-p)2]   • (6) 

The nonvanishing components of the strain-rate tensor are defined by 

3q« ÜL D     =* 
rr ar 66    r 

(7) 
*%      a(1z D     =D     =_Z  +  _L     . 

rz      zr    3 z 3 r 

Explicitly,   the dependence of the viscosity on the strain-rate is given by 
the relation: 

u-u,.-     {T
2
=^) 

1/2 
[D

2
    +*(D2    +D

2    +D2 ) -1   (dlvq)2! 
L  rz,   2 v   rr       6 9       zz'     3  v      M'  J 

o 

(8) 
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Actually this accounts for the viscous effect only approximately as U0 would be 
dependent upon local pressure, shear gradients, and temperature, since it must 
be far beyond Newtonian conditions,    T    would also depend on local conditions. 

The usual Navier-Stokes equations of motion for viscous fluids are con- 
sequently complicated by replacing the constant coefficient of viscosity with this 
function.    So too is the energy equation which may be derived under the assumption 
that no heat is transferred between neighboring particles of the material.    These, 
together with the continuity equation and the equation of state give the following 
five relations (Eulerian formulation) for the five dependent variables q  ■ q , p, p 

and specific internal energy    U: 

li +  0 dlv  q   =0 
d t 

(9) 
OWass) 

dt 

a 

-I   dlv i 
+ 2 U(D) 

(10) 
(Radial 
Momentum) 

(^-^ 

d<l- 

dt ■?r<h [H2^ -IH] 

r   ar     ^ u y   'Va z 3r   /   J 

2^  -i dlv <Vj (in 
(Axial 
Mom.entum) 

P=f (D. U) 
(12) 

(State) 

fdU d(l/p)  1 
[dT +   p It j u (D) D   . 

(13) 
(Energy) 

The material time derivatives may be expanded according to the relation 
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JJ   (       )  = -^f—   +   q • grad (     ) 

A discussion of our choice for the equation of state is given later in the 
paper. 

STUDY OF THE GOVERNING EQUATIONS 

An examination of the momenta,   continuity and energy equations shows 
that necessary conditions for dynamic similarity of two projectile-target systems, 
projectile and target i^f same material for a given system,  are that they have the 
same values for the dimensionless ratios (4) 

B  = -^2 R  -     B    0      0 

o 
%     ^O a % 

(14) 

V P/Po vo 
In these quantities the characteristic length,    Ds,    is the diameter of the sphere 
with mass equal to that of the projectile;      v0      the impact velocity;      P       the 

density of the undisturbed medium;   p   and   U   ,   represent the characteristic values 
of pressure and specific internal energy,   respectively. 

BQ   and   R0   are the familiar Bingham-Oldroyd and Reynolds numbers which 
ordinarily arise separately in the theory of slow visco-plastic flow and the theory 
of viscous liquids respectively.    Here both occur because the model includes the 
two types of flow.    M*   is the generalized Mach number which for an ideal gas may 
be decomposed into two factors,   the ratio of specific heat and the ordinary 
Mach number   M.    Since the fundamental equations of flow also include the equation 
of state,   equality of numbers (14) is not sufficient to ensure that two geometrically 
similar flows are dynamically similar.    The equation of state,  an experimentally 
determined function,  does not lend itself to this type of investigation since it is 
different for different materials. 

The equations governing the flow can be written in dimensionless form by 
setting r = Lr' z = L i* P = PQ 

pl 

Ij.-vq^ <1Z=
VV U=v2U' 

2 -1 
p = p   v   p' t = L v     t1 

-1 2„„-1 
u=LovR T=pvBR        , 
''o o o      o 

where Ds   is replaced by   L and    vo       by   v    in the definitions of   B,    R,    and 
the dimensionless quantities are indicated by a prime.    The governing equations 
then become 
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dP'   + p> dlv' q'  = 0 
dt 

/     da ' ap'  ) 

4— + —   = 
(     dt' a r'   J 

+ B{_ {2 L-_<Uv'q')     +     {   + ) 

r-     |Dl      \3r' r1  /) 

RP'_1   + _   = 
l    dt' az«; 

|Sz'\    32' 3 /       r'     ar' \ BZ' jr'/) 

(15) 

(16) 

(17) 

-1- -(= (äZ
1
 iD'iy 

aq'       2 
2 - dlv 

ja1 3 /      r'   ^r'       ID'I y3z' ar' /? 

p,=r-^f(pop'- v2u,y 

^•[^-^M-IH-1} 

(18) 

(19) 
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Che momenta and energy equations are thus of the form 

where the inertial,   viscous,  and strength terms are associated with the factors 
R,    1   and   B   respectively.    The quantities in the brackets will be of order unity 
if   L,    v,      P-      are truly representative values.    If so,  and if one of the three 
numbers   R,    1,    B   is much greater than the other two,  a single set of terms in 
each equation predominates and the motion may be approximately deicribed by 
equating the coefficient of the predominant number to zero.    For exa.'iple,  if 
R  »    1,    B,    the equations (16),   (17),   (19) reduce to 

dq- 

df 

=  0 

respectively. 

dq* 
2 

dt7" 

dU' 

df 

^P' 
= 0 

d (l/p) 
+ p- 

df 

(20) 

=  0. 

Actually,   these combined with (15) and (18) are the perfect fluid equations, 
and are seen to be valid when the inequalities   R    p»>    1,    B   hold-,   i. e. ,  only when 
the inertial effect predominates,  i. e. ,   by (14), 

'***■ maxim HvV v %/L po) (21) 

As the rate of flow decreases so does the characteristic velocity until eventually, 
when the Clow ceases,    v = 0.    Clearly,  in the late stages of flow the inequalities 
required for the perfect fluid approximation to be valid are reversed,   i. e. , 
R     «:    1,    B.     At other stages,   two or possibly all three of the groups of terms 
may be equally important. 

Il is seen that the strength terms are insignificant during the early stages 
of flow but become predominant in the latter stages.    The question arises as to the 
importance of the viscous terms.    Clearly,   they would always be negligible only if 

maximum      (R, B)* ^ 1 (22) 

for the entire range of   v,     (0,    v0).    Since   R   and    B   are respectively,   mono- 
tone inc-reasing and decreasing functions of   v   the left side of (22)    is attained 
when   R = B,    i. e. ,   when the flow velocity is given by 
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The required inequality for the viscous terms to be negligible throughout the 
cratering process therefore becomes 

wo ^ L V°o To (23) 

At the instant of impact an exceedingly large strain-rate gradient is im- 
posed at the surface of contact.    The use for example,   of the diameter   Ds   for 
the representative length   L   cannot be justified;   a much smaller value is actually 
required.    Accordingly,   the inequalities (21) and (23) are very restrictive.    The 
viscosity is probably never really negligible in the time interval immediately 
after impact. 

CHOICE OF PARAMETERS 

The principal difficulty in testing these conclusions,  and a real difficulty 
in the application of the governing equations themselves,   is in assuming the vis- 
cosity coefficients for structural materials such as steel,   copper,   or aluminum. 
The viscosity involved here has little relation to ordinary creep data.    The choice 
of an appropriate value for the dynamic shear yield strength     T        is nearly as 
troublesome.    It is known to increase with increasing strain-rate,  but values are 
not known in the hypervelocity impact range.    Therefore,  to check the philosophy 
used in the construction of the mathematical model exploratory  calculations had 
to be performed in which the values of    ^0    and   T

0     were varied over several 
orders of magnitude and the impact velocity   v0   was allowed to assume a set of 
values in the range of interest. 

In choosing trial values for    u0      our starting point has been the values 
quoted by Perzyna (5).       On the basis of the results of internal energy measure- 
ments by Kolsky (6) he computes the approximate values * 

Steel:     •-'o    = 0. 3 gm cm       microsecond 
Capper: o    =0.4 gm cm      microsecond 

Our calculations have all been for iron and    u        is assumed to be within'a factor 
of ten of 0. 8. 

For mild steel,   Reiner (7) quotes the static yield stress to be approximately 

T -2 -1 9 o =  10   "" gm cm       microsecond "^ _ 
i. e. ,   ten kilobars.     For our calculations it is the dynamic yield stress that is p 
tinent.    The above value is assumed to be the lowest value likelv,  and   T is o 
varied up to one hundred times as large,   i. e. ,   one megabar. 

ier- 

ONE-DIMENSIONAL PROBLEM 

For the exploratory calculations we will consider the one-dimensional 
impact of two semi-infinite bodies,   Figure 2,  and compare the results obtained 
with those given by the simple Rankinc-Hugoniot equations (perfect fluid).    In one 

The gram-centimeter-microsecond system is used throughout this paper. 

141 



INERTIAL.  VISCOUS,  AND PLASTIC EFFECTS 

(©" 

KZS 

I 77777777777777? 
♦ FORCE 

(a) 

(b) 

Figure 1. Schematic representations of the 
(a)forces in a Binghamhody and (b) the depen- 
dence of the viscosity on the strain-rate. 
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STATIONARY INTERFACE (j»0) 

a D m 
BODY I BODY 2 

(a) (b) 

BODY  1 BODY 2 

STATION j 

QUANTITY 
-00 TO -1 0 0 1 TO 00 

q Vo «»H «»H 0 

X jAx 0 0 iAX 

V*l/>) Up ^/»H Up Up 

U 0 UH UH 0 

P 0 PH PH 0 

(c) 

Figure 2.     Illustration of impact situation (a) just before impact,  (b) at impact, 
and (c) a display of the initial and boundary data.    The subscript H 
refers to the Rankine-Hugoniot values. 

dimensional Lagrangian form the governing equations are as follows: 
P~    v .v P0 

> x        st  \     p   / 

Po 
aq 

— + - % —   /— — \ *x    3   0  ax    y po    >x y 

p=f (p, U) 

^t      at \ o/   3  07^_^axy     ys    PO 

dscosity coefficient becomes,  assuming flow, 
/7~" P T 

•»CO 

4        p aq \'     -    'o/ sq 

a* 
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and the stress cutnponents become 

'rrr=Te6"-p 

/i     To  ^K"   ( ^T ) 

4     2   PZ      / a q \ 

(26) 

T
Zz=-p + i   ^o   Do     ^""Vä     \Bien\-^l Trz=0 

Here   X =   X (x,  t)   is the instantaneous position of a section;   x   is the initial 
position of the section at time zero. 

Analytical methods for solving these equations are not available,   even for 
the one-dimensional formulation.    It was therefore necessary to resort to finite 
difference techniques for the compulations.    The results reported here were ob- 
tained using a computer program based on an explicit difference scheme described 
in detail elsewhere (4_,   9).    An alternate implicit scheme utilizing the Eulerian 
formulation and requiring less machine time for large   y       and    y       values has 
also been developed (9). 0 

To use either scheme of calculation the initial values (i. e. ,   at time   t = 0 
and at all points of the space mesh) must be assigned.    The initial values that we 
have assumed at and away from the interface are displayed scnematically in Figure 
2c. 

NUMERICAL RESULTS 

The various combinations of assumptions for    U0     ,    T
0     and   VQ    for which 

calculations have been made are displayed in Table I.     The values of the dimension- 
less parameters   B0   and   RQ   are listed for each combination and are seen to   cover 
a wide range.    In computing these parameters the characteristic length is taken as 
unity.     This choice is meaningful only after a stable pulse has been established. 

To check the accuracy of the program, the calculations for cases No.   1 
(v0 = 0. 5,     T0     = 0,    M,,     = 0) and No.   49 (v0   = 1. 0,    ^   = o,    M0    = 0) have been 
examined in detail.     The pressure profiles are depicted in Figures 3 and 15.     It is 
seen that a stable shock front is established in 2 to 3 microseconds.     For compari- 
son the Rankine-Hugoniol solutions,  applicable since here   u0' =   T

0     =0,  are also 
shown at   t = 1   and   t = 5    microseconds.    The other calculated dependent variables 
behind the stable shock may also be compared with the corresponding Rankinc- 
Hugoniot values for cases No.   1 and No.   4 9,   Table II.     The computed quantities 
represent mean values about which there are small oscillations at the various mesh 
points behind the front . 

The medium for each of the cases No. 1, 2, 3, 4 is a fluid since T
0 =0. 

The manner in which an increase of the viscosity factor W affects the pressure 
profile is illustrated by comparing Figures 3,  4,   5,   6.    In case No.   2 ( U      =0.08) 
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TABLE   I 
Enumeration of parameter combinations for which calculations have been made for 
one-dimensional iron impact.   The units are in the gram-centlmeter-microsecond system. 
The computed presGure profile characteristics are also listed (fiP • profile thickness, 
VP = profile velocity). 

No.     1 Paramete rs            ! Numbers Stable Profile                | 
V                    T 

0             o o 
B            R          1 

o            o 
p             AP VP 

1 0.5        0 C _                             00 1.541       .21 .534 
2 0.5        0 .08 0          49 1.549      .25 .537 

1      3 0.5        0 .8 0              4.9 1.560       .70 .545          j 

i      4 0.5        0 8 0                .49 >5 

5 0.5      .01 0 «                             00 1.545       .22 537 
6 0,5      .01 .08 .25        49 1.552       .25 .538 
7 0.5       .01 .8 .025        4.9 1.563       .70 .545          i 
8 

1      9 0.5       .1 0 C3                                 OD 1.581       .22 .548 
|     10 0.5      .1 .08 2.5         49 1.572       .25 .549          | 

1     11 0.5      .1 .8 .25         4.9 1.574       .72 .552 
12 

1 
13 
14 0.5         1 .08 25              49 1.758       .27 .643         | 

1     15 0.5         1 .8 2.5            4.9 1.762       .78 .649          | 
16 

49 1              0 0 CD 4.601       .21 .673 
\      50 1              0 .08 0           98 4.616       .22 .675 

1      51 
i      52 1               0 8 0                .98 >4.6         3.5 

TABLE     M 

Rukine-Hugoniot values compared with Dnite-dlfference calculations for one- 
dimensional Iron-iron impact ( u    -T   = 0).   VP denotes velocity of stable 
profile relative to the Interface. 

Case   1      / 

(vo..5,    j 

P VP D VP 

Hugoniot 1.S65 0.0873 0.0312 0.S466 

Computed 1.541 0.0867 0.0265 0.534 

Case 49     /    Huguniot 4.C4C 0.0734 0.125 0.682 

Computed       4.601 0.0734 0.122 0.673 
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•figure 3.     Calculated pressure profiles compared with the Rankine-Hugoniot solu- 

tion (Case 1:   v   = .5,  T    *u   =0). 
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Figure 4.     Pressure profiles (Case 2;  v   = .5,  T   = 0, U   = .08). 
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Figure '>.     Pressure profile« (Case  3:    v     -   .S.  i     -  0. a    -.S). 
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Figure 7.     Pressure profiles (Case 5:  v   =   5. T   =.oi.u   =0). 
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Figure 10.   Pressure profiles (Case 9:  v .5,  T    = .1, U 0). 
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Figure 11.   Pressure profiles (Case 10;  v   - .5, T   = . 1, U   = .08). 
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Figure 12.   Pressure profiles (Case 11:  v   = .5. T   = .1, U   = .8). 
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Figure 13.   Pressure profiles (Case 14:  v   ■ .5, T   ■ I, M   = .08). 

152 



INERTIAL.  VISCOUS,  AND PLASTIC EFFECTS 

3r 

0 4 06 0 8 
DISTANCE FROM INTERFACE (CM) 

(o) 

I 2 
DISTANCE   FROM    INTERFACE   (CM) 

(b) 

Figure 14.    Pressure profiles (Case 15: v    = . 5,   T   =   1.   u    = • 8). 
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Ftgurp 16    Pressure profiles (Case 50    v   ■ 1. T   - 0, U   - .OS). 
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a stable profile is obtained nearly as quickly for case No.   1  ( ^o    = 0),  i, e. , 
certainly in less than 5 microseconds.    In case No 4 ( U0      = 8),  on the other 
hand,  a stable profile requires more than 10 microseconds to be established. 
Case No.   3 ( M0      = 0. 8) is intermediate to these extremes and its pressure pro- 
file for times less than 1 microsecond are seen to be similar in form to those of 
case No.  4 for 1 to 10 microseconds. 

In all cases that    ^o   ^ ^   the material near the interface is seen to be 
subjected to very large pressures in the first few tenths of microseconds.    The 
amplitude ^ind velocity of the stable profile,   however,  are only slightly increased 
by the inclusion of the viscosity,   even for    U     = 8. 

It may also be observed from Figures 3,  4,  5   that as the viscosity is in- 
creased the front of the stable pressure profile is less abrupt.    The effect is not 
noticeable for    W0    = 0. 08 (case No.   2) but is significant  for     U     = 0. 8 (case No. 
3) and is even more pronounced for   U0    =8 (case No.   4).    In the latter case   R0, 
B0 <   1 and it might be anticipated that the viscous terms would predominate. 

Tr- 

2 4 6 
DISTANCE FROM INTERFACE (CM) 

Figure 17.   Pressure profiles (Case 52: V   • 1, T   = 0   u   - 8i 
o o o 
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Comparison of Figure 6 (case No.   4) with Figure 17 (case No.   52) shows 
that increasing the impact velocity from 0. 5 to 1. Ü causes the pressure profile 
to become more quickly stabilized.    In the latter case the profile changes less 
after 5 microseconds elapsed than in the former case.    Comparison of Figure 4 
(case No.   2) with Figure 16 (case No.   50) illustrates the fact that the stable pro- 
file becomes more abrupt with an increase in The higher impact velocity 
also,  of course,   greatly increases the pressure and the velocity with which the 
stable front travels. 

Now let us examine the results for cases where T * 0 
(25) into the last of (26) yields 

Substitution of 

2       2 4 T =Toyr U     T Ho   o 

p 

o 3* 

2 2 

(27) 

In front of the disturbance    öl/5xs=   0,  in the disturbance aq/aJKr o   and, 
finally >q/%x    droPs back to zero after the disturbance passes.    Consequently, 

2^    2 T    > T 
2 '  2 

in the disturbance,  but   T    drops to TO  after it passes.    This 
means,   in terms of our visco-plastic model,   that there is flow only in that part 
of the medium through which the disturbance is currently passing;    it again be- 
comes rigid behind the disturbance.    This phenomenon is illustrated in Figure 18 
where the value of   ,    is shown at various time intervals for two typical param- 
eter combinations  (Nos.   14 and 15).    At each instant 2      2    is seen only in a 

T>To 
finite region which represents the current position of the disturbance. Only in 
this moving region of disturbance docs the medium behave as a viscous liquid. 
The regioh. is more spread out the greater the value of   U    . 

Comparison of Figures 7,   8,   9   (cases No.   5,   6,   7) and Figures 10,   11, 
12 (cases No.   9,   10,   11) with Figures 3,   4,   5 (cases No.   1,   2,   3) respectively, 

is little change effected on the stable profile by inclusion of the yield stress if it 
is as low as     T

0 '= 0. 01    or     T0   = 0. 1.    Only small increases in the pressure 
and in the disturbance velocity are apparent.     This might be expected since for 
all these parameter combinations the ratios   B0:  R0   and 1:  R0 are small,   i. e. , 
the inertial terms predominate.    It must be kept in mind that in an actual cratering 
process the flow velocity must always decrease to the point where    T0 is important. 

On the other hand,   comparison of Figures 13 and 14 (cases No.   14,   15) 
with Figures 4 and 5 (cases No.   2,3) respectively,   shows that both the amplitude 
and velocity of the pressure pulse are significantly increased by the inclusion of 
the strength term if it is as large as    T

c),    = 1. 0.    The shape of the pulse,   however, 
is apparently not strongly affected,   nor is the time required for the profile to be 
stabilized as may be seen by comparing Figure Da with 14a.     For these cases the 
inertial and strength terms are both important,    R0: B0 = 1. 97. 

These characteristics of the stabie profiles for the various cases are dis- 
played in Table I.    There   p   denotes the pressure behind the disturbance;    A P and 
VP   denote the thickness and velocity (relative to the interface) of the stable pres- 
sure profile,   respectively. 

156 



INERT1AL,   VISCOUS,  AND PLASTIC EFFECTS 

DISCUSSION 

In our model the medium is considered to act as a viscous Liquid rather 
2       2 than a solid,  provided    T > T .     It is therefore consistent with ordinary viscous 

fluid theory that the equation0of state be given in terms of a hydraulic pressure 
p,    equal for all directions.    We have,  as usual,   taken   p » - (    Trr    T6 9 + Tzz '/^ 
as the thermodynamic   pressure,    if thelmedium were to be considered a deforma- 
able solid and the material strength retained throughout,  a tensorial equation of 
state would have to be used. 

The particular equation of state employed in the calculations,    p = f 
(    P» ^   ),   was determined by the Los Alamos group from measurements on pres- 
sure pulses induced by higli explosive.    The method is indirect in that the observed 
quantities are the pulse velocity and the free-surface velocity produced by normal 
reflection of the pulse from a free boundary.    Pressure (strictly,   stress normal 
to the wave front,    _ T

zz ) and corresponding values of internal energy and density 
were computed from these measurements by means of the Rankine-Hugoniot rela- 
tions.    An equation of state based on the assumption that   ^o = To = " ^as t;'lus been 
employed to calculate the behavior of a model for the material which assumes 

lli.l + IT |>0. This certainly leads to errors but they are of second 0 0 " J 

order and would not be expected to mask the effect of including the viscous and 
plastic terms in the other equations governing the model.    The results have borne 
this out since,   as physical reasoning would imply,    ^Q    chiefly affects the shape 
of the stable disturbance and    T

0 has its main effect on its amplitude.    At Lower 
velocities. 

Other remarks on the equation of state are also relevant.    In concerting 
the measured velocities to pressure-energy-density states it was tacitly assumed 
that a stable,   abrupt disturbance was obtained.     Verification by direct measure- 
ment of the pressure profile has not been possible and justification for the assump- 
tions is based on the reasonable agreement with extrapolation of hydrostatic data. 
This should not be construed as proof that the viscosity and strength effects are 
negligible,  however,   since even with viscosity factors as large as    U0 = 0. 8 and 
yield stress as great as    T   = 0.1, v   = ,5, the differences in the velocity and 
amplitude of the stable pressure v/ould be difficult to observe by such measure- 
ments. 

The fact that " T
zz and not. p   is the actual pressure reflected from the free 

surface in the experiments may not greatly affect the equation of state calculations 
since the shape,  velocity,   and amplitude of the stable   p   and   " T

zz profiles are 
nearly identical.    To see this compare Figures 5b,   6 and 14 with Figures 19,  20, 
and 21 respectively;    these show the two corresponding profiles for three typical 
cases,   Nos.   3,  4,   15. 

Prior to the establishment of a stable profile,   however,   the components of 
the deformation stress tensor,  of which T      

+P        is one,  are not small.    At 
the instant of impact between the two bodies a very large velocity gradient is im- 
posed on the material near the interface.    As the front of the disturbance propagates 
into the body the gradient at the interface decreases and the gradient at the front of 
the disturbance also decreases because of the smearing action of the viscosity. 
From (27) is seen that the von Mises statistic,   _*   ,  which is a measure of the 

T  ■ 
magnitude of the components of the deformation stress tensor,   must act similarly. 
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Thus when viscosity is present the material near the Interface is subjected to a 
much greater distortion than material away from the interface.    This is illustrated 
in Figure 18 by the envelopes of the i distributions. 

These latter observations are consistent with experimental evidence that 
internal structural changes in a metal can be related to the distribution of stress 
that existed in an impulsively loaded body by plotting contours of equal hardness on 
sections of the body (1_0).      The contours wer J found to coincide with the isochromatics 
obtained in photoelastic studies,  i. e. ,  the contours lie along lines of maximum shear 
stress.    Recent microhardness studies (11)  of one dimensional impacting plates have 
shown that   indeed the microhardness near the impact interface is maximum,  the 
value decreasing rapidly outside the interfacial zone. 
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Fi^uru 21.   Profiles of stress normal to the wave front (Case 15: v   = .5. T  = 1, M =.8). 

CONCLUSIONS 

A visco-plastic model for hypervelocity impact has been proposed which 
takes into account the inertial,  viscous,  and plastic effects.    This was accomp- 
lished by introducing a viscosity factor     IJ0      and a dynamic yield sti ess T

0' 
From an examination of the resulting system of equations several dimensionless 
parameters were found which control the relative importance of the three effects 
at the various stages of the cratering process.    The inertial effect was found to 
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be important throughout the early stages whiLe the strength of the medium is 
dominant during the final stages.    Immediately after impact the viscous effect 
is large in the zone near the contact interface.    Its magnitude decreases as the 
strain-rate gradient decreases,   but it may remain important throughout the 
flow process. 

In the absence of definitive data in the hypervelocity impact regime, 
computations were performed on a one-dimensional model in which the values 
of    P0   and     To   were varied.    The above qualitative conclusions were verified. 
Specifically,   the following was found. 

1)   The assumption Uo>0 results in large initial values for the pressure 
and deformation in a zone near the impact interface.    As    W0    is increased the 
effect becomes greater and the disturbance propagates a greater distance before 
reducing to its stabilized shape and amplitude.    For impact velocity   v0 = 0. 5 cm/ 
microsecond,  the time the disturbance propagates before a stable profile is ob- 
tained varies from about 2 to 3 microseconds for     M0   = . 08 to more than 10 micro- 
seconds for   ^' 
the value of 

"o      " 8.    The required time is less the greater the impact velocity; 
T        has little effect. 

2)    The amplitude and velocity of the stable pressure profile are only 
slightly increased as    U    is incrsased,  but its width (shape) is significantly larger. 
Increasing the yield strength has little effect on the shape of the stable pressure 
wave;   it significantly increases its amplitude and velocity only if   T

0     is as large 
as one megabar.    The latter conclusion is valid for particle velocities of 0. 25, 
o. 5 cm/microsecond and larger.    At lower velocities   T

0     has a more significant 
effect on the viscosity coefficient,  see (8),  and thus more effect on the pressure 
wave. 

These conclusions may be related to the qualitative model of crater forma- 
tion that has evolved from experimental studies in which the actual cratering pro- 
cess has been monitored (12).      It was found that though only five to ten micro- 
seconds are required to use up the projectile,  the crater continues to enlarge for 
several hundred microseconds.     The mechanism of crater formation is therefore 
essentially one of cavitation,   the size and shape of the final crcter being determined 
by   (a) the shape and amplitude of the pressure wave established during the first 
five to ten microseconds by the action of the projectile on the target,  and   (b)   the 
resistance of the target material to flow,    (c)   The flow continues until the amplitude 
of the wave decreases below the intrinsic yield strength of the material. 

The calculations presented in this paper show that the shape and amplitude 
of the pressure wave,    (a),  are in turn strongly dependent on the viscosity of the 
medium.     This is especially true during the first microsecond after- impact when 
the strain-rate gradient is largest.    Also,   the resistance of the target material to 
flow,   (b),  depends on the viscosity factor   '■'o    and,   to a lesser degree,  on the 
strength factor    T0    ;  the viscosity coefficient becomes larger and more dependent 
on    T

0    at the smaller strain-rates.    Finally,   (c),  the strength factor   T       controls 
the instant when the flow ceases. 

Thus,   both   UQ    and   To   are important in determining how long the crater- 
continues to expand.    This may explain why a crater in Lucite stops expanding earl- 
ier than one in aluminum despite the relative magnitudes of their yield st' f 'gths. 
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A THEORETICAL STUDY OF DYNAMIC 

PLASTIC DEFORMATION UNDER IMPACT LOADS 

L.   E.   Fugelso 

American Machine and Foundry Company 
Niles,   Illinois 

I.    INTRODUCTION 

A theoretical treatment of dynamic plastic deformation under impulsive 
or impact loads is presented^    Equations of motion based on dislocation theory 
are employed.    The specific problem solved in this paper is the deformation of 
a semi-infinite half space which is struck suddenly by cylindrical projectile. 
The method of solution is based on a set of continuum equations derived from 
discrete-dislocation theory of plastic deformation.    The basic physical assump- 
tion of this model of deformation is that the total deformation of the medium is 
composed of elastic deformation or distortion of the body accompanied by the 
motion of dislocations under the applied stress. 

This problem was carried out as a portion of a theoretical study of light- 
armor penetration by subsonic-velocity projectiles in the velocity range of 300 
to   6000  ft/sec.    Excellent correlation with experimental data was found.    It is 
believed that the theory is equally applicable to hypervelocity impact. 

At the Fourth Hypervelocity Symposium Hopkins and Kolsky'2' presented 
a breakdown of the impact phenomena based on the predominant mode of deforma- 
tion.    Regions for predominantly elastic deformation,   plastic deformation,  shock 
propagation, etc. ,  were estimated based on the stress generated at the surface 
by the impact.    The bounds on the predominantly plastic region were,   for the 
lower bound,  the velocity such that the generated stress is the static yield stress, 
and for the upper bound the velocity is the impact velocity at which the decelera- 
ting force on the projectile is equal to the yield point of the material.    In this 
regime,   the plastic flow is estimated by quasi-static plasticity theory. 

The foregoing discussion places extreme limitations on dynamic plastic 
deformation as a mode of impact deformation. 

Little is known concerning the actual behavior of a body which is under- 
going plastic deformation under non-steady or dynamic conditions.    A character- 
istic feature of plastic deformation under static conditions is a sharp break or 
rapid change of slope in the stress-strain curve.    For higher rates of loading or 
for loads of very short duration,   the stress-strain curves obtained under the same 
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geometrical configuration are markedly different,  passing in the limit of ex- 
tremely short duration loads to the finite elastic stress-strain curves.     Under 
experimental conditions the stress at which the stress-strain curve breaks 
over apparently increases with increasing strain rate.    Thus a very complicated 
form of the stress curve must be a priori postulated lo account for the experi- 
mental findings.    Therefore,  an extensive study was undertaken to investigate 
this behavior and to determine the magnitude and nature of plastic flow under 
impact. 

In the process of plastic deformation a basic physical mechanism dif- 
ferent than geometrical distortion of the specimen occurs.    If this non-elastic 
mode of deformation occurs in single crystals,   the most probable mechanism 
of deformation is dislocation movemi   ;t.    Similarly in polycrystalline metallic 
specimens,  slip along the grain bounuaries of the crystals may proceed in a step- 
wise fashion.    For other materials where non-elastic deformation is of prime 
interest   such as clays,  soils,  plastics,  and organic compounds,   this deformation 
proceeds by some rnicromechanism or combination of micromechanisms,   which 
may be quite involved.    Since the application of the present study is restricted to 
the impact of metallic plates,  only one mechanism is utilized to describe the 
non-elastic deformation. 

The total deformation    in     metallic specimens is then due to the action 
of two physically different mechanisms: 

(1) Geometric distortion or elastic strain. 
(2) Movement of dislocations under stress. 

The deformation must be described in terms of these two mechanisms.    This 
description was carried out in detail using the geometric theory of dislocations. 
By defining a continuum distribution of dislocations and deriving equations for 
the statistical transport of them under an applied stress,  a set of continuum 
equations describing the deformation of the body were determined.   u' 

The characteristic features of dynamic plastic deformation that may be 
deduced from solution of these equations include: 

1) Once the stress wave has reached any given point in the medium two 
steps occur in the deformational sequence at that point:    an instantaneous elastic 
deformation and a lime-dependenl plastic deformation. 

2) Solution of the öne-dimensional problem shows that the elastic strain 
propagates as a distinct wave while the plastic deformation is diffusive in the 
region behind the elastic wave front.    There is no distinct plastic wave. 

3) The stress-strain curve for any material is not unique,   even though the 
relation between stress and elastic strain is unique and the mechanism for motion 
,f dislocations is unique.     The resulting total stress-strain relation is a derived 
:urve and is dependent on strain rate,  duration of stress,   stress magnitude,   and 
geometry. 

4) The dynamic yield stress for plastic flow is explained simply.    At 
early limes,   little plastic flow has occurred and the stress state may   not yet 
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be stable with respect to plastic flow or dislocation movement.    Use of a con- 
ventional definition for a yield stress,   such as the stress at a 2 percent-offset 
from the linear infinitismal elastic stress-strain curve will show an increase 
over static or long time values. 

II.    GENERAL EQUATIONS 

The solution of the plastic and elastic deformation of an elastic half 
space with a continuous distribution of dislocations will be studied.    The prob- 
lem will be restricted to cylindrical symmetry. 

The general equations of motion are*'' 

ds. 
im 

ax]        d*m 

av. 
2. 1 

'1       d t 
2.2 

i i 

^^—d. 
d~  ""j 

2. 3 

where 

D,       D     are stress dependent diffusion coefficients for the dislocations, 
I     '    2 

siln   are the components of the plastic driving stress tensor. 

Assume Hooke's law for the elastic part 

o-    = X«       8 . + 2a« 2.4 

•ij = l/2{u. . +u. .) 
2. 5 

d„   = ... - «      B„ 
2. 6 

vhere    A  .   fi  are Lame's constants. 

Since the medium undergoing deformation is isotropic 
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9;-    SB   q8.m    +        «1 :_ im       ^   (m im 

2.7 

Kestricting the equations to the case of cylindrical axisymmetry the 
equations of motion then are   - 

_  dflrr .     di*rz qrr-| | d2u 2.8 
 LL_ + +     -    -K-          

d r d   z r  J C2    at2 

'2-{^-'}^-^[|4- 
1    _l_  d^w 

J      2ca  d t5 a r       d 2   J       2c„  d ta 

D.V2  c      =  f-  ... 

2. 9 

2. 10 

'J        dt     diJ 2.11 

Where    u     ,      W    are the displacements in the   r    ,    Z    directions respectively, 

X + 2/i = 1J 2. 12 

and   A    is the dilatation 

Vd r r        d z  ) 2. 13 

These equations take on a more instructive form through the application 
of potential theory. 

Introduce the potential functions   <fr    ,    ^f   ,   S   ,   T   ,  defined by 

u-rr"TT+ rr-zTr 
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0 Z dt 0 z Or 2.15 

Differentiating the first equation with respect to Z and the second with 
respect to r , it is readily observed that the plastic driving stresses are har- 
monic functions 

q_—    ^v   ^ 2 16 

q     _ IX     d2^ 

- i-L _ ifJf' szz "a * drZ 2  18 

.      _    dT       jW_ 
ri"    «^  "   drdi 219 

Inserting these values into the equations,   the equations reduce to the 
following 

C .2    d 
- n2 Tf    =  VZ S 2.20 t 

J_    .diS   -  V2T 
C,2    TF V 2.21 

2.22 

2.23 

where 
2_    X-t-ZM c g  _      ^ 

cl   -       ^ ' 2 /> 

From the nature of these equations,   four boundary conditions must be 
prescribed for the free surface. 

The first two equations indicate the propagation of two elastic waves.    The 
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second pair of equations are the same form as the one dimensional plastic-elastic 
wave studied by the author ^'.    We recall a theorem derived therein,   the deriva- 
tive of a term involving the dislocation parameters   may be replaced by division 
bythe average spacing of the dislocations 

D.di v = V D2 d i v = V2 

where   V   is the dislocation velocity.    Then the second pair of equations is identical 
in form to the one dimensional case 

W" V2--$V2* +{v2gro--^r}v2
<MO 

2. 24 

{c,2 V2 - ifj V^ *{.,,rod- ^} 7^=0        225 
1 

The nature of these solutions is recapitulated here.    One part of the stress 
wave propagates at sonic velocity,  the wave front being damped by the action of 
the dislocations.    The dislocations move away from the wave front and further dis- 
placement occurs behind the wave front and at the same time,   the stress state is 
relieved. 

Here the only difference is that the non-elastic behavior occurs in both 
the shear and dilatational modes.    Since the diffusion coefficient that appears in 
these equations is dependent on the maximum shear stress,   more plastic deforma- 
tion is to be expected in the shear wave. 

The solution for the non-steady one-dimensional stress wave has been cal- 
?1) culated v  '.    A typical strain profile is shown in Figure 1.    In this problem a con- 

stant stress is applied at the end of the rod and held.    Since no locking mechanism 
has been assumed for the dislocation movement,   the plastic: flow continues at the 
end of the rod. 

(x - ■) d-,-'') 

Figure 1.    Elastic-Plastic Strain Profile in One-Dimensional Rod at Various Times. 
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III.    THE SOLUTION 

A detailed solution is evaluated for a simple case.    The dependence of 
the plastic driving force is assumed to be scalar,   i. e. ,  the tensor components 
of the driving force are all assumed to vanish with the exception of the scalar 
term. 

Under this assumption,   the equations of motion for elastic and plastic 
deformation of the half space are 

3. 1 

V2w  -{277-1} 

'    J a r      /* 
a or _   1     a2u 
a r     "  c2     dt2 

dA         |   da- 
dz         n dz 

_   1     a2* 
c2

z at2 

D (T) V 2  (A) = ÜÄ? 
a t 

3.: 

3.3 

The boundary conditions are 

z = P« (r.t) z=0 r<a          t^ 0 
= 0 z =0 r> a 

cr=0 2=0 t;>0 

^rz        " 0 2=0 t > 0 

These boundary conditions state that a surface traction normal to the 
surface,  given by   PQ.    is applied to the surface,   that the surface is free of 
shear tractions,  and that the driving force for plastic deformation and disloca- 
tion movement vanishes at the free surface. 

The thermodynamic treatment of dislocation movement indicates that the 
dislocations move at nearly a constant velocity when the shear stress is above 
the static yield stress.    This fact is borne out by the elementary solution for the 
one-dimensional case.    This solution indicates,   that away from the wave front, 
the  velocity does not depend on the magnitude of the stress above the yield stress, 
thus little dependence on the transient inertial forces is expected.    Therefore, 
the inertial forces are taken as zero in the following development of the equation. 
These equations are similar to the equations of motion for deformation of a por- 
ous media.    The following method of solution of these equations is by potential 
functions and the transform calculus.     The methods of solution follow very 
closely that of McNamee and Gibson '3). 
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dZ
U 

d t2 
a2w _ 
dt 

= o 

= o 

The equations to be solved for the plastic-elastic deformation are 

{^J-^-fr-tlf.Jrjf^o 

w-{^-.}|f--i-4f=o 

D^mflx)V2Az:4A d t 

3.4 

3. 5 

3. 6 

with 

A = 
^ d r r dz ' 

3. 7 

and 

By differ-entiation of the first two equations 

VZ{(r+ZfjiVA}= 0 

so that,  if   S   is a harmonic function of   r   and   z 

' = ^|f-a. 3. 9 

It may be shown that another potential function   E   may be introduced 
such that 

A = V2E 3.10 

The displacements   u   and   w     arc  related to these potential functions by 

_ aE   . , a s 
U   —  "T      +   Z    -XT      • d T d  x 3. 11 
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W=1E  +2 ö-£    _s 3. 12 

and the potential functions satisfy the equations 

DV4E-V2^E_ 
0 t 3. 13 

72S = 0 
3. 14 

Utilizing the linear stress-strain relations the components of stress may 
be written in terms of the potentials 

a      _   dS 
Z ft  ~  d z 77V

2E 3. 15 

or r 

"27 ••dr2 J dz z d z 3. 16 

= {J.f--V3}E-z ÜJ +is. 
az2    ax 3. 17 

<rz   _ f d 
2M = {^-v2}- dzs ^ as 

az2 az 3. 18 

r 2     _ a2E _2Jis. 
2/i arflz ara; 3. 19 

These expressions identically satisfy the equilibrium equation.     It is more 
convenient to solve these equations in a non-dimensional form.     The substitutions 

fbr' 

z^bz' 

t 
t'b2 

where   b   is the radius of the area that the pressure is applied.    This substitution 
introduces a non-uniform time scale into the problem,   but will not introduce any 
serious difficulties. 

The equations for the potentials become 
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V4E/-  72.1I_L 
at 

V2 S'ro 

and similarly for the stress and displacement coefficients. 

3. 20 

3.21 

The superscripts will be dropped as no confusion will be encountered. 
The boundary and initial conditions become 

<r =0 on z =0 

r>|}t>0 

Tr z   = 0 2=0 

Introducing the Laplace-Hankel transform of potentials 

e- f -v*    ? E- j   e <»t ./   r J0(e r)E(rIt)dr 
0 o 3-22 

CO oo 

S- /•~P  dt  /r J0(er)S(r,t)dr 0 »    >   '-> 3  23 

and utilizing the differential relations of this transform, the transforms of the 
stresses and displacements are 

2/* d2Z dt 3   24 

as ^.=-^*'«e 3.25 

^ _ as 
o   — - 

ÖZ l   dz2 -^ 3.26 

^ = -^(£, + 2 8,) 3-27 

dz d2 3.28 

and the differential equations are 

.2 {^2-'H-b-«8K=0 
3.29 
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«2 

{Ä-f2}? = o 
3.30 

subject to the initial and boundary conditions 

O   n    0 or 2=0 

*      _ PoJl(g) r>l    ! 
p^ v r = 0     t > 0 

=: 0 r > I 
Trz 

The general solutions of the potentials may be written 

E = A, e +A.« 
3.31 

A -it 
S -B| * 3.32 

The relations between the coefficients may be established by considering 
the values of the stresses at the boundary 

A.^+A^f^tV-f)^   ^ format       Z=0 

AI{-^) + A2(e
2 + p)l/2=0 tor$ri--0   ^      z-O 

A2(-i7p) + B1(-f )= 0 for    ^=0at      z=0 

Thus 

. _    Po    e(c2+P)l/2 

A'-~T^" p   A 3-33 

.   - ,    PQ    f2J, (£) 
A2-        2^ p   A 3.34 

• 2/i A 

3,36 
A=€3[-(e2+p),/2]+e[-e3-i?pe] 

The change of scale    n — f <* S 

is made.    (The inverse transform must also include this change.) 

PpJ^Kl+s)172 

'" Z/nf*   sX 3.37 
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A2 = 
Po 
2^ C4sX 

B , = 
Po'» 

C» x 

\- (l+s) l,2 + l+^s 

3. 38 

3.39 

3.40 

The potential transforms may be written 
Ali. 

Er - _ Ü2.   Ji(e)   r(|  ^s)l/2e- 
2M e s X 

fzCl+s) 

±       ] sX 3. 41 

§  = Po7?      J|^)   0-
2^ 

C3 x 42 

Inverting the potentials,   the fuLlowing expressions are obtained 

E---47^Tie       «is/ T  
^    Br o 4 

(I +s)   "Z 
s  X 

ii 
s   X 

^   e.-2Nn-s)^ ]d€ 

s = - 
>    TJ .* 2 00 
o  ' r   stf /• 
—r Je ds J- 
iru.{ J J 

J|(C)vJ0(rC)    -zC 
4   TTfl 

dsj p--  e        dC 
Br 0 

3.43 

3.44 

Due to the complexity of the ensuing integrals,   for arbitrary position, 
they will be evaluated here for   z = 0,    r = 0.     By the boundary conditions O', ' P- 

T      = 0    .    By invoking symmetry arguments on the horizontal displacement 

u,  u = 0   • 

The other integrals to be evaluated are 

W      — 

p" ^  r^Üil ds / jMü? dc 
Zir" fi\   Br 

<r r 

3.45 

3. 46 
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and 

aw      P0       /»[(i + si'^-d+s)]  st*2    . j (oC)    . 

Br 

where Br   denotes the Bromwich contour. 

The Laplace inversion may be carried out 

E = 

S = 

Po    r Ojiiljoili^ rT    ,  1 ^ 

t /J
((nj0(re)e-^i3de 

3.47 

3. 48 

3. 49 

where 

(l+s)"2     -zC    st«' 

Br 

T   -     I       r _§         e d s 
1z      2 TT i  •{, s x 

Br 

I   -  -^~ /   -S   ds 
3       2wi  •'ßr       X 

Evaluation of   I 

I,    = 
L_ /iLUl^ig^! es,f2ds 

'     ~       2  TT i     «L S    { X) 
B r 

If the factor  X  is written in the form 

X- 
'72s2 + (2i?-l)s 

(I+T?S)-(I+S)I/2 

ind substituting  y=ZCt       r = t C 

.[(H-s)1^!-*-^-(H-s)] ,-y  e    ^   d8 

i2 
I,   = ;l 

'       Br 
2  (  s+   ^) 

3. 50 

3. 51 

3. 53 

3. 54 

3. 55 
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Substituting   8= S- I  ,  the Laplace shift theorem implies 

This integral has a branch point at S=0.   a double pole at   S=l      and a 

s=(J!t±\2 

pole at    '       \   V  /      ■    Thus this integral reduces to the sum of the residues and 
a branch line integral from   — 00     to  Q •    The solution given by the residues is 
constant in time and corresponds to an instantaneous elastic displacement.    The 
contribution from the branch integral det^   .üines the unsteady behavior.    This 
integral may be readily evaluated.    Subsntute s = V 

_ z^ ;V'2[^4-v3+o-^2]d, 
1 '    2^2i   J   (V2. CJLlf) 

00 
Denoting _____  j*f(v)dv     by     K ,    (T ) 

Repeating the development for J       I 

-/ 

00    TV
2      yvLv3_v2 + v(| 

Ze K,(T) 
V 2 3 

3. 57 

0 ^ 
2e"y-r 

1,=   —        K    (r) 3.58 
V 

T-Z -   ~i—   KZ ^'^ 3.59 

3. 60 

3. 61 

00      -r,,2 o 
I r   e   V   (7?v

2-v + (I-T;))   dv 

K3-     2-oJ      (v2-,)2^-^)2) 

Thus CO 
E=_for¥l^r.tc2      (tc2) 

S=--^-2/ ^(OJ^rC)   e-,C-^K3(fe
2)d€ 3.64 
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These integrals will not be evaluated at this time.    The expressions for 
the displacements and stresses which involve derivatives of these expressions 
will be derived and the resulting expressions will be calculated. 

The vertical displacement and the maximum shear stress at   2-  0 , r=0 
will be calculated. 

The vertical displacement is 

d z d z 3. 65 

Inserting the transforms into this expression 

W u.nZJ 
Pn     ?   «UOvU'Ö 
WZJo f 

!-i [-Ce- -zC    ',   .     -T   dKz 
* Kl(T)-e     -^ 1 o z U.zC)]dC 

P 
CO 

fa/j,^Jo(rOhe-T-^K   (r)]de 

3. 66 

at     Z-0     this reduces to 

P ® 

A41?2 ^ 
-lo. r Ji (f)Jo(rO r. -T 

00 

[^•-TK,(r)-e-T-^(T>o)]de 

H-V 
f ^iC<i0{ri)[-'ie-T K3(T)]dC 

3. 67 

Taking the displacement  atr=0 

P ^ 
-        0 

W      ^./Ml^e-K.U)-«^^ fLtf dz 

(T.0)+€2*'TKa(T)]d€ 
3. 68 

with 
00 

Ki(T)-2Ti 
I      ^e™   (v4-v3-KI-7?)v2) 

0  (v2-!)2^-!^-)2) -/ 
dv 

an 

d 

(ijv4-v3+v2(l-77)) 
dv 

)2) 

3. 69 

3. 70 
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K,fr) = J 4    (v2-l)2 (vz-(^L)i 
3.71 

Thus 
CO 

w - 
po 

M^2   ^    '    ' " 3.72 
f iJ{ {£) *~r K3(r) 6 t 

Similarly 

P, 00 

dz H-*    £       €        Lai        2 J 3.73 

Numerical solutions for the deformation were made on the surface at the center 
of the impact.    The vertical and horizontal stresses,   the maximum shear stress, 
the vertical displacement and the vertical strain were computed as a function of 
time (Kig.   2).    These solutions indicate that the displacements due to plastic flow 
take a certain amount of time. 

For short times after the impulse little plastic deformation has taken 
place.    Around 100 fj. sec the plastic deformation becomes appreciable and the 
decay of the shear stress becomes rapid.    The horizontal stress rises rapidly 
approaching the value of the vertical stress.    If the shear stress is allowed to 
decay all the way to zero,  then the horizontal and vertical stresses are equal 
and a state of hydrostatic stress exists.    The displacement reaches a maximum 
or limiting value.     The maximum shear stress decays rapidly as the dislocations 
move.    Two factors arise to control the amount of plastic flow as are seen readily. 

1. The maximum shear stress must exceed a certain level. 
2. The duration of the load is such that the maximum shear stress is 

high governs the total amount of flow.    Thus the duration of the 
high stress rather than the stress rate is the governing factor. 

The stress —strain relationship that would be observed at the surface is 
computed for several durations of the applied load. The vertical stress as the 
vertical strain is plotted (Fig. 3). Because the boundary stress is maintained, 
the stress-strain curve does not flatten out to a horizontal position, hut rather 
a limiting slope is approached as the lime duration of load becomes infinite. 
This demonstrates another point. The observed total stress-strain curve is 
definitely a function of geometry and boundary conditions. 

The stress at which a 2 percent offset of the total strain from the instan- 
taneous elastic strain is plotted as a function of load duration (Fig. 4).    The increase 
in this definition of the yield is quite marked. 
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The vertical displacement at the center of impact is.  of course,   the depth 
of the crater that will be formed.    To compare these results with experimental 
data this displacement must be calculated as a function of depth.    To accomplish 
this,   tlie pressure on the surface must be found and the duration of the load must 
be calculated.    A cylindrical projectile is assumed.    The vertical applied stress 
is related to the incident velocity by the Beltrami equation for projectile and target 
of the same material CV : 

where 
p = density 
C  = compressional wave velocity 

v i = impact velocity 

For similar target and projectile materials,   this stress is maintained for 
a period while a compressive stress wave is sent back into the projectile and a 
tensile is reflected from the near surface of the projectile.    Thus the time dura- 
tion is twice the length of the projectile divided by the sonic velocity 2L 

Figure 5 shows the vertical displacement as impact velocity for several 
lengths of projectile.    Then deformation curves are compared with other theoretical 
approaches,   linear elastic^) and hydrodynamic '■*'   and experimental values. 
Reasonable agreement is shown for the range computed. 

SUMMARY 

The time dependent elastic-plastic deformation problem for impact has 
been solved,   utilizing continuum equations derived from a two mechanism model 
of deformation.    The two basic physical processes used were elastic distortion 
and movement of dislocations under stress. 

This two-mechanism model gives reasonably accurate quantitative prediction 
of dynamic plastic deformation,  specific qualitative information about the course 
of dynamic plastic deformation,  and information of engineering interest. 

Notable among the information on- the course of the plastic deformation 
is the derivation and computation of the observed stress-strain curve.    This study 
also indicated that yielding begins instantaneously,   but that the full effect of yield- 
ing occurs over a period of time at a rate dependent on stress and on material 
properties. 

The magnitude of the plastic deformation under impact conditions is 
governed by two features of the impact:    (1)   the magnitude of the stress,   which 
may be related to the incident velocity,  and (2) the duration of the stress,   which 
may be related to the material properties of the target and projectile and to the 
geometry of the projectile. 
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HYDRODYNAMICS APPLIED TO HYPERVELOC1TY IMPACT 
I.    SCALING LAWS FOR DISSIMILAR MATERIALS 

A.   E.   Olshaker and R.   L.   Bjork 

The RAND Corporation 
Santa Monica,  California 

I.    FUNDAMENTAL SHOCK RELATIONS 

Shock Waves 

It is an interesting property of fluids and gases that any compression 
wave,  even if started with a continuous form,   will become discontinuous as it 
propagates,   with this discontinuity or shock wave moving supersonically with 
respect to the overtaken medium.    For an elastic-plastic solid under certain 
conditions an elastic disturbance may precede the shock wave,  but its particle 
displacements and pressures are usually small compared to the shock pressures 
and particle velocities,   and will not be considered here.    A rough but simple 
physical justification of the discontinuous compression in fluids is obtained by 
noting that in general the more compression any given matter undergoes,  the 
stiffer it becomes,   with the resulting greater bulk "force constant" giving a 
higher "frequency, " or disturbance propagation velocity.    Therefore,   the more 
compressed part of the waveform will propagate faster than the less compressed 
part,  overtaking it until a shock is formed in which the pressure jump approxi- 
mates a mathematical discontinuity.    This is sketched in Figure 1. 

Figure I.    Steepening of Compressive Wave Fronts with Time. 
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By the same argument one would expect a tensile, or rarefaction wave- 
form, even if initially discontinuous,  to become increasingly smoothed out as 
it propagates,  with its front traveling at the speed of sound in the undisturbed 
material,   and this is in fact the case. 

One-Dimensional Shock Conservation Relations 

Shock relations are derived by considering the shock as a mathematical 
discontinuity across which irreversible processes occur.    Hugoniot showed in 
1889 that,  in the absence of viscosity and heat conduction outside the shock,   con- 
servation of energy implies conservation of entropy in continuous flow and also 
implies a change of entropy across shock (2) To quote a current textbook, 
Courant and Friedrichs,   "In reality very considerable changes of velocity and 
temperature occur across such surfaces;   thus the assumption of sharp discon- 
tinuities is indeed an idealization which agrees with the facts rather better than 
we might hope. " "'   The simple but important relation of pressure,  density and 
energy across a shock was first derived by him and still bears his name. 

Let us first review all the relations which must hold across a one-dimen- 
sional shock before bringing in any material properties.    It is important not to 
think of a three-dimensional cratering process initially,  so that the important 
points of shock systems can be seen from these one-dimensional arguments. 

Consider a column of fluid in a tube (Fig.   2) where   a0(t)   and   a^{l) 
denote the positions of the moving particles that form the ends of the tube.  At 

u,(t).ä|(t) 

ao(t-> a((t) 

Figure 2.    Sample Volume for Deriving Shock Conservation Relations 

first let the tube interior be completely general.    The absolute particle velocities 
at the tube ends are then   a0 = u0   and   äj   = ^   respectively.    The dot over the 
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(B)   Velocities in the Center of Mass 
Coordinate System 

Torqef. V«0 

(A)    Velocities in the Laboratory 
Coordinate System 

-•—Inferfoce   (coat of red paint on 
surface of target and projectile) 

(C)   Shock Parameters in the Center of Mass Coordinate 
System. 

Figure 3.    Shock Relations for a One-dimensional Impact Between Similar 
Materials. 
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symbol denotes differentiation with respect to time.    The three conservation 
relations are: 

e 
Conservation of mass 

a^t) 

/ 
-^— | .. dx     =  0 (1| 

a0(t) 

Conservation of momenlam 

/ 

al 
p   u dx = p0 - pj (2) 

This simply says that the only forces acting are pressure forces,  and 
that consequently the rate of change of momentum of the column equals the total 
resultant force exerted on the column. 

Conservation of energy 

/ 
u2 + e    dx   =   Pouo"  Plul ^3) 

dt / "2 
ao 

e   is here the internal energy of the material per unit mass,  so that the 
total energy per unit mass is   e + 1/2 u  .    The equation then says that the change 
in net energy is due to the "power input",  or the work done in unit time by the 
end pressures.    A fourth implied relation is that entropy either increases or re- 
mains constant,  but this is automatically taken care of by Hugoniot's arguments 
when the shock is introduced. 

In Appendix A the three so-called jump conditions across a shock are 
derived from Equations 1-3 by permitting a mathematical discontinuity within 
the tube,   and then letting the tube shrink to just include material immediately 
in front of and behind the shock.    The resulting relations are: 

Conservation of mass 

p    (u     U)     =i  PiCuj  - U)   =    m,  the mass flux 
(4) 

where    U   is the absolute velocity of the shock. 

Conservation of momentum 

Pouo(uo - U)   +   Po      3    Piui<ui - u)   + Pi 

Conservation of energy 

Huo2+eol + PoUo = m 11" ui2 + ei 1+ pi ui 

(5) 

(6) 

in 
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where   m   is the mass flux in (4). 

The Hugoniot relation is derived from these three jump conditions in 
Appendix ß,  after a moderate amount of algebraic manipulation,  and is: 

y   (PQ+
;
PI)   (V0 - vj)    =   e] - e0 (7) 

where   v   is the specific volume,   =    -g- . 

This is an important equation in shock dynamics because it refers only to 
thermodynamic quantities.    It can be interpreted as saying that the increase in 
internal energy across the shock front is due to the work done by the mean pres- 
sure in performing the compressions. 

Note that Equations 4-7 are completely general for any one-dimensional 
shock system in which the only noteworthy force is a pressure.    This will be seen 
to be v/ell verified for metallic solids above one or two hundred kilobars. 

In these equations it is important to distinguish between the shock velocity 
U,    which is the absolute velocity of propagation of the interface between the com- 
pressed and uncompressed zones,  and   u,    which is the absolute velocity of the 
material particles.    Courant and Friedrichs "' gives an analogy of the shock sys- 
tem which is perhaps familiar.    Imagine a single file row of speeding automobiles 
coming upon a long row stopped at a traffic light.     The particle velocity is that to 
which the stopped cars are abruptly bumped in sequence,  which is the same veloc- 
ity as that to which the speeders are equally abruptly decelerated.    Two shocks 
result.    One is the interface between the stopped cars and those which have been 
bumped,   and this is evidently a rapidly advancing forward facing shock whose 
velocity depends on the car spacing and "particle velocity, " which in turn depends 
on the mass and bumper design of the cars.    It is not obvious.which way the 
second shock,  which represents the discontinuity between the speeding and slowed 
cars,   moves,  and in Reference 4 and below it is shown that it can be either way, 
depending on relative properties of the two columns.    This,   of course,   is of 
interest in impact,   since sometimes the projectile material can go deep into the 
target before it  overtakes.the rear shock and is decelerated. 

it is shown in Reference 3 that particle velocities always decrease across 
a shock from left to right,  and also that the shock propagation velocity is always 
supersonic with respect to the material before it,  and subsonic with respect to 
the compressed region behind.    In the limit of very weak shocks,   the material in 
front and behind the shock is im'istinguishable;    therefore,   the disturbance is sonic 
with respect to both,   and this io a sound wave. 

In the auto column,   the deceleration from left to right,  and compression 
behind the shock are evident,   and if driver agitation is considered an analogy for 
thermal motion,  so is the increase of temperature. 

Shock Relations for One-dimensional Hypervelocity Impact (Target at Rest) 

Using the jump conservation relations 4-7,   we will now show some 
properties of the initial impact shock front.    That is,  the following equations 
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are one-dimensional,   which is for the case of projectiles as well as target being 
semi-infinite.    The condition of interest for hypervelocity impact is target ma- 
terial at rest and under no pressure in front of the shock,  or   p0 = u0 = 0.    For 
convenience,  we define   e0 = 0 also.    The quantities behind the shock in the high 
pressure and density region have the subscript   1. 

Conservation of mass,  Equation (4) becomes,  with   u0 = 0, 

P i(V ' V   =Po U (8) 

Pi 
Po U-u1 O) 

Conservation of momentum,  Equation (5) becomes,  with   p = u   =0, 

P1   =       P,  (U-u^ *! 

or using Equation (8), 

Pi    =     Po U ul (10) 

Equations (9) and (10) show that across a shock,   the pressure rise and 
density increase are completely determined by two velocities,  the particle 
velocity behind the shock   ui,    and the shock velocity   U.     This fact will be 
referred to again,   since in experimental determination of shock pressures and 
densities the actual measurements made are of these velocities,  and it also will 
turn out to be very useful in some applications to plot material shock properties 
in the pressure versus particle velocity form for this case of stationary material 
before the shock. 

If the impacting material is the same as that of the target,   then the par- 
ticle velocity behind the shock is exactly one-half of the impact velocity.    This 
interesting fact is a consequence of symmetry,  and is apparent with the help of 
Figure 3 which is taken from Reference 4. 

There it was explained that in the "center of mass" coordinate system 
the interface is brought to rest by symmetry.    This coordinate system is re- 
ferred to a point halfway between the impacting surfaces,   and moving at   V/2. 
But the entire shock system may then be translated to the right at   V/2,    after 
which Figure 3C will become equivalent to the target coordinate system after 
impact.   Figure 4.    It is now seen that the particle velocity after impact is   V/2. 
This is plausible by the automobile analogy if one considers inelastic collisions 
of equal mass cars. 

Figure 3C can also be used to show how the similar material impact 
pressure can be calculated.    Using the center of mass coordinate system,   con- 
servation of energy requires that the specific kinetic energy of the material in 
the two moving zones outside the shock becomes specific internal energy of the 
compressed material in the shocked region,  where there is no velocity^ 
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Figure 4.    Shock Parameters for a One-dimensional Impact Between Similar 
Matpria^s Referred to the Laboratory Coordinate System. 

independent of any conditions upon increase of entropy.    Therefore,   the Hugonict 
relation,   (7) becomes: 

2 
1 / ^ v 

T   P1 (v0 - v,)   .     — 

1     ^ v . ei    =   -—     ( — ) 1 (j o 

V 
8 

Then 

4 

and multiplying by  p0   and dividing by   1 - p   I p,  , 
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Po  V2 

4(1-P0/P1) 
Po   V2 

4(1  - v./v,,) l'vo (11) 

Since the pressure does not depend on the coordinate system,   this equation holds 
for either two semi-infinite slabs approaching at   V/2 each,  or for one approaching 
the other at   V.    Therefore,  if one knows the experimental shock pressure versus 
density ratio,    p   versus   v/v0,   one can calculate the similar material impact 
pressure by plotting Equation 11 for a constant value of   V,  and reading the pres- 
sure at the intersection of the two curves.     (If the density is taken in grams/cm   , 
then velocity in (KM/sec)/10 will give the pressure in megabars. ) 

A more general and convenient method will be given in the following.sec- 
tions for identification of maximum impact pressures for either dissimilar or 
similar material collisions. 

(10): 
The velocity of the shock moving into the target is obtained from Equation 

1       lPüUl/ (12) 

The pressure is substituted in from (11),  so 

"2 4  (1  -    pj  p 1>/    Poul 
(13) 

But for similar material impact, 

V 
U 

therefore 

2(1  -P-bl     j) 
V 

^Pl-Po) 
(14) 

for the shock advancing into the target. 

The only difference between the shock facing the target and that facing 
the projectile is in the translation V, so the velocity of the rear shock is ex- 
pression (12), 

L2( PI - p,o 

2 p. 'i 

2 (P, Po   > J 
(15) 
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This shows thit the shock moves to the left if   2p     >    Pj , and to the right if 
Pi  >   2p.    Whether these conditions are fulfilled or not depends on the particu- 
lar materials and impact velocity. 

Hugoniot Curves and Equations of State 

In the above three conservation relations the four unknowns are pressure, 
density,  internal energy,  and velocity,  all of which must be determined as func- 
tions of time and position.    One more equation is needed to determine the four 
unknowns,  and since the first three are general,  the fourth must bring in the 
relevant material properties.    This is the equation of state of the material.    In 
this formulation the natural choice is pressure as a function of density,  and 
internal energy,    p Cp,e).    (Other forms such as   p (v,  T)   or   p (v,  S) are equally 
valid but less convenient. )   With these four relations,  any fluid dynamic process 
is theoretically determined.    The difficulties involved in realizing the solution are 
1)   the actual calculation of this unsteady,  non-linear problem in the presence of 
discontinuities,  or shocks,  and   2)   specification of the equation of state in the 
relevant pressure ranges. 

Calculations of this problem are handled by large computers and numerical 
finite-difference techniques.    Since machines cannot handle discontinuities,  a 
method of approximating shocks by rapid but continuous variations which satisfy 
the conservations and still give the necessary entropy increase is used.    Axially 
symmetric projectiles are used,   which reduce the number of space variables 
from three to two.    (Even with this reduction,  the mountain of data which the 
machine spews forth is monumental.    One compensating advantage of this lies in 
the fact that the detailed aiep by step records of the impact process give valuable 
insight into the mechanisms at work.) 

The determination of the equations of state up into the hydrodynamic 
regimes is the major problem in the field of high pressure physics.    Again,   it 
should be mentioned that the   p(p,e) equations only have the essential parameters 
of the fluid regimes,  which are felt to be the most important in hypervelocity im- 
pact.    To obtain a more complete impact problem solution,  the relations of dis- 
placements as functions of pressures,   shears,  and time would have to be known. 
When one considers how little is known about such a relative simplification of this 
general case as work hardening under static loadings,  the inclusion of general 
rate and loading effects is impressive.    This is also true for the same problem 
in tension,   which is of interest for problems of spallation and dynamic fracture. 
However,  the hydrodynamic equation of state,    p(p, e),   must be known first before 
other refinements can be added for the "low" pressures toward the end of the impact. 

Measuring densities as functions of temperature and pressure by static 
loadings in inadequate for hypervelocity impact,  since static pressures cannot be 
made sufficiently high.    Britigemaiv0' has conducted isothermal compressibility 
studies on many materials to pressures as great as 10U kilobars,  or almost one- 
and-one-half million pounds per square inch,  but this appears to be about the 
practical limit for static methods. 

On the other hand,   theoretical equations of state calculated by quantum- 
statistical mechanics are not valid until pressures of 10 to 20 megabars or more, 
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which is fairly high even for meteoroid impacts. 

What has finally begun to make this information available in the ranges of 
greatest interest for hypervelocity impact has been dynamic measurement methods 
including the use of hypervelocity impact itself.   Shock waves induced explosively or 
by impact generate the pressures required,  and Equations (9) and (10) show that for 
any one shock strength,   measurement of both the shock and particle velocities deter- 
mine the pressure and density jump across this shock, and so give one point on a 
pressure versus volume or density ratio plot.    The locus of thecs points obtained for 
different shock strengths is known as the Hugoniot curve of the material.  This is be- 
cause the Hugoniot equation.  Equation (7),  is identically satisfied between any point 
on this curve and the foot of the curve,  where p = 0. (On these scales,  one atmos- 
phere is indistinguishable from zero pressure,)   It should be emphasized that such a 
plot does not show a continuous compression process of the material,  but rather the 
series of points to any one of which the material is discontinuouslv compressed 
across the shock of that particular strpnuth 

It is only within the last five years that these curves have been measured 
and placed in the unclassified literature,  and recently there seems to have devel- 
oped a characteristic competition between American and Soviet scientists to 
obtain higher experimental pressures.    Our workers at Los Alamos have inves- 
tigated Hugoniot curves for 27 metals to about 0. 4 megabars, ^6' and 19 metals 
up to two megabars, ^ '   while Al'tshuler, et al. ,  in Russia have published curves 
of nine elements to 4 megabars, '  ' and iron up to 5 megabars. (One megabar, 
or one million bars,  equals 14,502,000 pounds per square inch or approximately 
one million atmospheres.) 

Some typical Hugoniot curves are shown in Figure 5 taken from the Los 
Alamos data.    The relative softness,  or compressibility of lead is apparent, 
while,  surprisingly,   copper is seen to be stiffer or less compressible than iron. 
The kink at the bottom of the iron curve is due to the phase transition discussed 
in Reference 1. 

The results shown in Figure 5 were obtained by measuring shocks induced 
by explosives detonated against the material.    By explosive detonation alone it is 
not possible to obtain pressures much over the one-half megabar shown.    With 
use of impact,  however, the data was extended beyond this limit.    Los Alamos 
employed explosively accelerated brass plates to achieve impact pressures in 
target specimens of two megabars,  and the Russians allude to impact methods, 
although without specifications of details,  in discussion of their five megabar 
resu''s. 

There are several different techniques used in measuring the particle and 
shock velocities which are needed to determine the pressures and density ratios 
of Hugoniot loci.    It is encouraging that in general the agreement between these 
techniques is excellent and such reported data are reliably known to within a very 
few percent.    In original explosive Los Alamos work,  shock and particle velocities 
were determined by electrical contact pins placed in holes drilled in the metal or 
spaced at small distances from the back surface.    Oscillograph records of con- 
centric arrays of 60 pins were used to correct for any nonplanarity and tilt of 
the shock wave.    Control of the shock wave strength was obtained by varying the 
type of explosive,  the thickness of the targets,  and placement of intermediate 
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Figure 5.    Hugoniot Curves for Four Common Metals. 
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metal between the explosive and target.    Another successful independent check 
was obtained from agreement between target Hugoniots calculated from these 
mechanical,  conservation measurements and those obtained from compatibility 
relations at the interface of the target and intermediate standard using the known 
Hugoniot of the standard. 

The more recent velocity measurements at Los Alamos use photographic 
methods based on the fact that confined gases become brilliantly luminescent 
when excited by multiple shock reflections.     '■   ^    '   A series of spaced argon- 
filled flash gaps are mounted at various positions behind the back of the targets 
and swept by a moving image-camera located in a remote bunker.    Both the 
velocities of the target shock wave and the particle velocities at the target free 
surface are then measured.    The average disagreement between this method and 
the pin contact technique is less than one percent in velocity. ^'   Attempts at 
direct measurement of pressures by piezoelectric crystals have confirmed the 
velocity-measured results. 

Of particular interest is an experiment in which three different orientations 
of zinc single crystals were explosively shocked two times in order to investigate 
whether observed compressions were dependent upon crystal orientation.    For a 
shock strength of 0. 414 megabars,  the spread in measured velocities was 1 per- 
cent,  and at 0. 200 megabars it was 1. 5 percent.    Since this is approximately 
the amount of experimental error,  and also similar to the results of polycrystal- 
line zinc,   it is concluded that at these pressures there is no dependence of shock 
velocity,  hence compressibility,   upon crystallographic orientation. "•'   However, 
these shock wave results differ from Bridgeman's lower pressure static meas- 
surements,   which show a several-fold difference in compressibility between the 
same axes,   the   c   and the   a. '5' 

Another typical characteristic of Hugoniot curves is that they are almost 
independent of small-percentage alloying.    Figure 6 shows points for both 1100 
aluminum,  which is known as commercially pure,  and 2024 alloy,  which is 4. 5 
percent Cu,   1. 5 percent Mg,  and 0. 6 percent Mn. *    '   There is no discernible 
difference in compressibility above approximately 130 kilobars,  which is what 
might be expected for slight amounts of impurities in such pure hydrostatic 
compressions. 

While obtaining the Hugoniot curve of a material is the first aiep in 
describing its dynamic high pressure behavior,  it is insufficient for determining 
a complete flow problem.    The compression .iump across the shock is determined, 
but the expansion back to zero pressure is not.    This expansion is adiabatic and 
reversible in contrast to the irreversible;shock compression.    This is just saying 
that what is desired is the general thermodynamic equation of state of the material, 

w hich would encompass any conceivable process.    For example,  the equation of 
state is some function   p = p(   ,e).    If the energy,    e,    is eliminated from the 
■■xpression by the relation which must hold across the shock,   Hugoniot relation, 

P + Po i i 
e - e0   =  2        (—    - — ) (16) 

then the resulting expression,    p' = p'  (p)   is the Hugoniot curve.    But since what 
is obtained experimentally is the Hugoniot curve,  a major concern is to use the 
Hugoniot as a basis for calculating the comp'ete thermodynamic equation of state. 
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This is done by combining theoretical results from statistical mechanics with 
known ihermodynamic properties at standard conditions,  and an approximate 
equation of state valid in the vicinity of the Hugoniot is obtained.    (More details 
are giver, in Reference 16.)   Since the impact problems are necessarily expanding 
down to zero pressure from points on the Hugoniot,  this region is the one of 
greatest interest.    These results are then combined with the quantum mechanical 
theoretical results which are valid in the very high pressure ranges,  and curves 
are faired in between.'  The Los Alamos presentation of this resulting equation is 
given in the following form 

im + a2|X.||i.|t e    (bp   +   bi U  +   ban.2)-*-    e    (Cot Clip,) (17) 

e   + e „ 
p(P;,e) 

where Poe M.   = 
2_ 
Po 

(12) and   p   is in megabars.    The constants for two elements are given in Table 1. 
U   is used simply because   p   versus (l starts at the origin while   p   versus p /p „ 
starts at    p /  p   0   =   1. 
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Figure 6.    Hugoniot Curve for Aluminum,  Comparing Points for the 1100 
and 2024 Alloys. 
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Figure 7 shows the Hugoniot curves of iron and aluminum which result 
from the following Los Alamos equation of state.    For the maximum meteoroid 
velocities of 72 km/sec,  iron to iron impact reaches a pressure of 143 mega- 
bars and aluminum to aluminum 47 megabars. 

TABLE 1 

Los Alamos Equation of State Constants for Two Elements 

Aluminum Iron 

a, 1.1867 7.780 

a2 0.7630 31.18 

b0 3.445 9.591 

b1 1.545 15.676 

b2 0. 9643 4.634 

c0 0.4338 0.3984 

c1 0. 5487 0. 5306 

E0 1-5 9-0 

Po 2.702 7.86 

p-u Form of the Hugoniot and Graphical Determination of Maximum Dissimilar 
Material Impact Pressure 

It was seen in Equations (9) and (10) that the pressure and density jumps 
across a shock are determined by the particle and shock velocities.    Therefore, 
since all four of these quantities must be determined in obtaining the Hugoniot 
curve,   the shock pressure versus particle velocity behind the shock may be 
plotted instead of pressure versus density ratio for the case of material in front 
of the shock at rest.    This   p-u   form of the Hugoniot is referred to below as 
pj^(u)   and enables the identification of dissimilar material impact pressures. 
Figure 8 shows that   p-u   plot for iron.    As illustrated in Figure 9,   consider 
material   1   moving at velocity   V   striking material   2,  which is at rest.    The 
shock pressure,  which is constant within the entire compressed zone,   is neces- 
sarily some point on the Hugoniot curve of each material,   by definition of the 
Hugoniot.    The problem is to determine what pressure is consistent with both 
materials,  since each will be compressed a different amount by any given shock 
pressure.    Using the   p-u   form of the Hugoniot the impact shock pressure for 
material   1   can be expressed as   ppj    (u)   where   u   is now the particle velocity 
within the compressed zone.    Next,        change coordinate systems so that material 
2 appears at rest,   and material   1    is impacting at velocity   V.    The magnitude 
of the particle velocity is now   (V-u),    because this second collision differs from 
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Figure 7.    Hugoniot Curves for Iron and Aluminum Derived from the Los 
Alamos Equations of Slate. 
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Figure 8.    Pressure Versus Particle Velocity for Shocks Moving into Stationary 
Iron.     (P-u Form of the Hugoniot Curve. ) 
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the first only by the translation of the coordinate system at velocity   V,    and the 
particle velocity must be constant within the compressed zone.    So relative to the 
now "resting" material   2,    the shock pressure versus particle velocity behind 
the shock in material   2   is expressed by   p^j    (V-u).    But in the compressed 

zone the pressure is the same no matter what coordinate system is used to 
observe it.    Therefore, 

PHj (U) PH    (V-u) 
"2 (18) 

This result shows how the maximum,  one-dimensional,  impact pressure 
may be found for any dissimilar material impact.    First the   p-u   Hugoniot for 
the target material,   the one actually at rest,   is plotted in the normal way from 
the  origin,   as in Figure 10.      Then the mirror image of the projectile material 

Material 2 
impact 

velocity V 

Compressed 
Pressure 
Particle 

zone 
P 
velocity u 

Interface 
JL 

Material    I 
at   rest 

Figure 9.    Sample Volume to Illustrate Solution of Shock System for Dis- 
similar Material Impact 

p-u   Hugoniot is drawn starting up from the point   u = V   instead of   u = 0,    and 
the intersection of the curves is the point   pu    (u)    =    ppj    (V-u).     Figure 10 shows 

this point for the case of iron impacting lead at 2. 1 kilometers per second.    It is 
seen that if the projectile material is the same as the target,  then the two   p-u 
Hugoniots are symmetric about the intersection and the particle velocity is just 
half the impact velocity,  which is the condition required of similar material 
impact by the symmetry argument of Section III.    Figure 11 shows a collection 
of   p-u   Hugoniots to moderate pressures,   and Table 2 tabulates compression 
and   p-u   Hugoniots for several metals and one rock,  taken from References 6, 
7,   10,   12,  and 13. 

By sliding the "backwards" plot of a projectile   p-u   Hugoniot up to the 
desired impact velocity on the abscissa of Figure 11,  the maximum impact 
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pressure is read at the intersection with the Hugoniot of the target material. 

In these tables and figures the iron and aluminum Hugoniots are generated 
from the complete equations of state of Table 1,  which was the result of the combined 
high pressure theory and moderate pressure experiment.    The other Hugoniots were 
extrapolated above the experimental ranges of 2-5 megabars using the experimentally 
observed fact that for every measured metal with the single exception of aluminum, 
the shock velocity is very accurately related to the particle velocity by the linear 
relation, 

P(Mb) 

1.0 1.5 
u(km/sec) 

Figure 10.    Shock Solution for Iron on Lead at 2. 1 km/sec. 

U   =   a + b u. (19) 

This makes the Hugoniot pressure Equation (10), 

P   =   Po U u 

become 

(20) 

p 0 u (a t b u) (21) 

for the   p-u   Hugoniots,  where the   a's   and   b's   are tabulated in References T 
and 9.    The extrapolations were made from measured pressures of . 5 to 5 mega- 
bars up to those in the range of 3 to 7 megabars.    This was felt to be a conserva- 
tive extrapolation because in comparing the iron Hugoniot extrapolated by this 
linear   U   versus   u   relation with that obtained from the complete equation of 
slate   (Table 1),   the pressures did not begin to depart until a similar material 
impact velocity of 30 kilometers per second,   which corresponds to a pressure of 
over 30 megabars. 
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Figure 11.   Shock Solutions for Seceral Metals on Copper and Lsad at 2.1 km/sec. 

The curve labeled "Tuff" refers to a soft volcanic rock of density 1. 7 
gms/cm   ,  in which some underground explosions at the Nevada test site were 
shot.    It is shown because its Hugoniot was the only non-metal one available; 
however,  because its complete equation of state has been estimated including 
the theoretical high pressure end,  hydrodynamic predictions can be made show- 
ing the effect of at least this one non-metal up into the meteor velocity range. 
In Figure 11 it is very interesting to note that both the steepness and magnitude 
of the Hugoniots generally increase with increasing density.    In the cases where 
this is not true in some regions,   it becomes so if a high enough pressure is 
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TABLE 2 
p-u Hiigoniot Values 

Pressure Particle Velocity, u(km/sec) 

Mb Fe Cu Cd Pb             Sn Al W Tuff 

.2 . 535 481 654 600 737 1. 06 241 2. 33 

.4 . 96 858 1. 09 998 1. 23 1. 83 453 3. 68 

.6   _ 1. 3 1 18 1. 44 1 32 1 63 2.48 645 4. 66 

. 8 1. 6 1 46 1 74 1 59 1. 98 3.04 825 5. 50 
1.0 1. 86 1 72 2 00 1 83 2. 28 3. 55 987 6. 25 
1.2 2. 1 1 95 2 24 2 06 2 57 4. 14 1 14 6. 88 
1.4 2. 32 2 10 2 47 2 26 2 82 4. 66 1 29 7. 52 
1.6 2. 55 5. 10 1 43 8. 08 
2.0 2. 94 5.64 1 69 9. 15 
2. 5 3. 3 9 6.49 10. 3 
3.0 3. 81 7.29 11. 32 
3. 5 4. 20 8.02 12. 3 
4 4. 56 8.70 13. 2 
5 5. 22 10. 2 14. 88 

10 7. 93 15. 1 21.4 
20 11. 9 22. 3 30. 5 
30 15. 0 
50 20. 1 

100 2 9. 6 
140 35. 6 

TABLE 2(a) 
p-u Hugoniot Calculated from p = p 0u(a+bu) 

Particle 
Velocity 

km/sec 

Pressure (Mb) 

Mg Be Cu Pb W Ti 

1 . 1 . 167 .402 1. 02 . 628 
2 . 244 .375 1. 24 1. 15 2. 53 1. 09 
3 .431 . 623 2. 26 2. 24 4.52 1. 65 
4 .663 . 911 3. 54 3. 67 7. 01 2. 31 
5 . 939 1.24 5. 09 5.45 9. 98 3. 06 
6 1.26 1.61 6. 91 7. 57 3. 92 
7 1.62 2. 02 8. 99 10. 0 4. 87 
8 2. 03 2.47 11. 3 5. 92 
9 2.48 2. 96 7.07 

10 2. 98 3.48 9. 66 
12 4. 10 4. 66 
14 5.40 6.01 
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considered     At the lower velocities lead exhibits lower pressures than its 
density (11. 34) warrants,  however at . 75 megabars it rises above iron (7. 84), 
at 2. 5 megabars it crosses over copper (8. 90),   and in the vicinity of 7. 5 mega- 
bars it appears to be finally crossing molybdenum;    (10. 20).    Even more striking 
is the fact that gold (19. 24) becomes stiffer,  or has a higher pressure for a 
given particle velocity,   than tungsten (19. 17) at 5 megabarr,. 

II.    SCALING LAW FOR DISSIMILAR MATERIAL IMPACTS 

In a beautifully conceived series of hypervelocity impact experiments, 
Summers and Charters^^' varied only the projectile material.    The impact 
velocity,   target material,  projectile mass and projectile geome^ry were held 
fixed.    The range of projectile density covered was from 17. 1 to 1. 75 specific 
gravity,   corresponding to tungsten alloy and magnesium respectively. 

One of the principal results was that penetration correlated well with 
density, the relation being essentially linear on a log-log plot of penetration 
versus density.    This implies an analytical relation of the form 

p ~    p.jf (22) 

where   p   =    penetration 
p      = projectile density 

ß      =    slope of log-log plot 

ß was different for the two targets treated,   viz. ,  copper and lead. 

3 
The constant projectile mass implies that   p   d    = constant,  where   d   is 

the diameter of the spherical projectiles used.    Thus in the experiments 

d -    Pp~113 (23) 

which emphasizes the surprising fact that the deepest craters were made by the 
smallest spheres. 

Since it is most common for experimenters to report values of   p/d   we 
shall have occasion to define   a   through 

P/d   -  (Pp)a (24) 

and it may be seen from Equations (22)   and (23) that   a    - fi + 1/3. 

An early objective of our investigation was to calculate the values of a 
(or 3  ) from equation of state data.    This would permit an extension of the 
Summers and Charters relation to velocities and materials not covered by their 
experiments.     However,   from the outset,   this aim was beclouded by the question 
of compressibility.    It is easy to convince oneself that there should be a cor- 
rection for the compressibility of the material in addition to the correction for 
the density which Summer's and Charters had found. 

Summers and Charters had attempted the inclusion of compressibility 
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effects through the use of the target sound velocity.    In principle we cannot agree 
with this use.    To begin with,   the sound velocity is determined by the very low 
pressure elastic properties of materials.    For example,   a detailed plot of the 
steel Hugoniot has the features shown in Figure 12.    The sound velocity is fixed 
by the slope of the straight portion up to point   A,  which MinshalP14'   has shown 
to occur at about 11 kilobars for steel.    Above 11 kilobars,  the material behavior 
is radically inelastic,  and it is the properties of the inelastic region which will 
govern impact phenomena.    It should be pointed out that Summers and Charters 
were well aware of the limitations involved in using a sound velocity to scale 
the impact process,   ar.u presented it only as a first cut at a scaling law.    A less 
serious objection is that the compressibility of the projectile is not taken into 
consideration. 

Both the density and compressibility enter into the determination of the 
Hugoniot.   so that these effects are both included if one formulates a scaling law 
based on the Hugoniot.    In addition,  physical intuition leads one to expect that the 
initial velocity imparted to the target material on impact will have a direct bear- 
ing on the crater produced.    Accordingly,   we set out to find whether or not the 
crater dimensions were some function of the initial target particle velocity in 
dissimilar-material impacts. 

In correlating the experimental data available,   it turned out that the crater 
dimensions were indeed a beautifully simple function of particle velocity,   namely, 
they were linearly proportional to it.    More explicitly,  for projectiles of the same 
mass striking a given target at the same velocity,  the penetration is proportional 
to the particle velocity initially produced in the target.    It will be shown that this 
single relation leads to the density dependence found by Summers and Charters 
for both lead and copper targets,  and predicts how the density dependence will 
change with impact velocity.    Moreover,   the relation may be applied to other 
projectile-target systems if the equations of state are known. 

The initial particle velocity may be calculated from the one-dimensional 
model treated in the first section.    We re-emphasize here that our.empirical 
relation is based on this one-dimensional panicle velocity.    In the case of similar 
material collisions,   the particle velocity is always half the impact velocity,   so 
that our result may be expressed as 

PA-A 

2uB-A 

V 

UB-A (V) 2u B-A (25) 

V/2 

The subscript,   B-A,  denotes cases where a projectile of material   B   is incident 
on a target of material   A,    p   is the penetration depth,    V   is the impact velocity, 
and   Up.   A  (v)   is the one dimensional particle velocity,   or maximum particle 
velocity.' for   an impact at   V,  of the target material behind the shock,  and this 
depends on the impact velocity.   V. 

By including the fact that the penetration is proportional to the size of the 
projectile,   we can remove the   restriction of identical-mass projectiles.    To- 
gether with Equation (23).   this fact leads to 
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Volume —■» 

Figure 12.    Details of the Hugoniot Curve at Low Pressures 

where 

(-r) 

B-A 

B-A 
= FB-A (-^-) 

A-A 

2u (V) 
B-A 

HT) 
1/3 

(26) 

(27) 

will be culled the normalized penetration ratio.    Here,   d   is the characteristic 
dimension of the projectile. 

Equation (26) refers the   B-A   penetration to the   A-A one.    However, 
suppose one knows the   B-A   penetration at a given velocity,  and wishes to cal- 
culate that for the combination   C-A.    It is easy to deduce from two applications 
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(-4-) C-A 

C-A B-A B-A 
(28) 

m 
Projectile 
 W 

, Pb 
Cu 
Fe 

■ Ti 

■ Al 

10 
Impact velocity (km/sec) 

IS 

Figure 13.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Aluminum Targets. 
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Figure 14.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Beryllium Targets 

Of course,  all of the factors in Equation (28) must pertain to the same impact 
velocity.    Thus,  when the normalized penetration,    p/d,    is known for any pro- 
jectile on target   A   at the velocity of interest,  one can use Equation (28) to 
calculate the normalized penetration for any other projectile incident on   A at 
the same velocity. 
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Impact velocity (km/sec) 

Figure 15.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Copper Targets. 

The normalized penetration ratios,    F,    have been calculated for eight 
metals and tuff from known equation of state data,  and are presented in Figures 
13 to 21.    Each figure pertains to a given target material,  and gives the factors 
as a function of impact velocity over the range where there is good confidence 
in the equation of state data.    Since the curves characteristically flatten out at 
the high velocity end,   they may be extrapolated to obtain rough approximations 
of penetrations in the meteor velocity range. 

For the three materials,   iron,   aluminum,  and tuff,  equation of state 
data were available upto the highest meteor velocities. These were formulated 
from a composite of theoretical and experimental data.    Figure 22 shows the 
six combinations of these three materials as both targets and projectiles up 
to the higher velocities.    The fact that these remain roughly constant through- 
out the high velocity range lends some substance to the extrapolation of the 
others. 

If one considers a particular target material from among Figures 13 
to 21, and calculates the penetration given by constant-mass projectiles at a 
given velocity on the basis of the graphs,  and then plots the penetrations versus 
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Impact velocity (km/sec) 

Figure 16.    Normalized Penetraticn Ratios as a Function of Impact Velocity 
for Iron Targets. 

the projectile density on log-log paper,   he will find that the plot is always well 
fit by a straight line of slope ß  .    This fact implies exactly the relation found 
by Summers and Charters,   as given in Equation (22).    In other words,   if our 
scaling law is correct,  they would have obtained the same qualitative result if 
they had used any of the target materials and velocities we have considered. 
Only the value of   ß   would have been changed,  since the slope of the line which 
best fits our calculated points changes with both impact velocity and material. 
The values of ß   so derived are presented in Figure 23. 

velocity   u       (V) 
•'      B-A 

The reason that a     ß -fit may be obtained is because at any impact 
is roughly proportional to some power of n     .    As might be 

expected,   there are some systematic deviations from this rule due to the char- 
acter of the Hugoniots involved.    These may be partially corrected by the cor- 
rection factors shown in Figure 24.    The     ß Taw penetration is to be modified 
by the factor   (K  IK),    where   K,     is the factor for the proiectile material, J p     t p f    J 

and   K     that for the target.    Thus 
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w Projectile 

W 

Tuff 

to 
Impact velocity (km/sec) 

15 

Figure 17.     Normalized Penetration Ratios as a Function of Impact Velocity 
for Lead Targets. 

- (W (K  IK.) 
P     t 

(29) 

The notion that the penetration is directly proportional to the particle 
velocity is physically pleasing,  and possibly applies to all materials over a 
wide velocity range.    This is particularly so when contrasted with previously 
proposed scaling laws,  which involved unusual powers of the density (and which 
we believe vary with velocity)   and treated compressibility effects poorly.    How- 
ever,  despite this aesthetic appeal,   it should be emphasized that the idea is 
still an empirical correlation,  having been given no sound theoretical basis as 
yet.    We hope that experimentalists will be stimulated to make further checks 
on the validity of the notion,   and that theorists will find it a fruitful area to 
apply their talents. 
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Figure 18.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Magnesium Targets. 
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Impact velocity (km/sec) 
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Figure 19.    Normalized Penetration Ratios as a Function of Impact Velocity 
Titanium Targets. 
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Figure 20.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Tuff Targets. 
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Impact velocity (km/sec) 

15 

Figure 21.    Normalized Penetration Ratios as a Function of Impact Velocity 
for Tungsten Targets. 

APPENDIX   A 

a0(t) ?=   Mt) 
t = U 

PI 

ul   =  al 

a^t) 
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Figure 22,    Penetration Ratios for Iron,   Tuff,  and Aluminum 
at High Impact Velocities. 
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Impact velocity (km/sec) 

Figure 23.    Values of ß   Deduced from the Normalized Penetration 
Ratio Curves. 
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Figure 24.    Correction Factors on /S(-Law 

The three conservation laws 

r/ p     dx = 0 

Tuff 
projectile 
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(A-l) 

a0(t) 
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dt       / 
P     u dx   =   p0 - p1 (A-2) 

al 

p    {-f u2 + € 

are all integrals of the form 

a^t) 

J=/ 
♦    (x, t) dx 

a0(t) 

Now say that there is a uiscontinuity in the column at   x   =       (t)   which 
moves at an absolute velocity (shock velocity)ii(t)   =     '(t).    Then 

J   =     / *    dx   +   / ♦ (x, t) dx   . 

ao i 

To differentiate these integrals we use the identity, 

• B(t) , B 

\-    I F(t,x) dx   =   j 

A(t) A' 

F(t,x)dx   =   / -%£-    dx   +   F (B)     dB -w 

-   F (A) 

dt 

JA 
dt 

Therefore, 

JL. j =  ^L_ / * dx + 4_   / 
dt             dt   / dt    J 

0 i 

■r 

ai 

dx 

at dx   +        *0   i    -    ♦(a^      u0 

+ *(a1)     ul "      *! S 

where     ♦ oa"1^     *1    are '■'le ^rfi13 of   ♦as   x   approaches   {   from the 
respective ends,  and    n     and   uj   are   ä0    and   ä^,  the particle velocities at 
either end. 

We now perform the limiting process,   letting the length of the column 
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approach zero.    The first integral then approaches zero,  and    ♦(a.)        '       ^ ., 
♦ (a0)    —**0   .  so 

lim 
al —ao        JT     J=       *! (Uj-U)-  -»^Uo- U) (A-4) 

since    \      = U.    Putting the 'I»   from the .three conservation conditions wiU now 
give us the three jump conditions. 

The mass conservation,    (A-l) becomes,   with  ♦  j  = p , 

P 1 (uj-U)   -   po (u0 - U)   =   0 (A-5) 

Since the quantity  p^ (u0-U)   »    p ^ (u , - U)   remains constant across the shock, 

we will denote it by   m,    which is the mass flux through the surface.    For 
momentum conservation,    ^    2   =   p   u ■  so equation (A-4) becomes 

plu1    (u1- U) •  pouo   (uo- U)   -   p0- pj (A-6) 

or using the mass flux   m   =    p   (u - U) 

m uj   +   pj   =   m u0 +   p0 (A-7) 

Finally,   for energy conservation. 

with * 3   =     P    )    u2   t   e >   ,  Equation (A-4) becomes, 

I h - u] - P«»JTUO2 + eo|   [Uo" u] = 

Pouo - Plul       (A"8) 

Ul'     + 

or,  again using the mass flux. 

|—   "-l2   +   el I     +   Plul    =   m   |—   uo2   +   eo|    +   Pouo 

(A-.9) 
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APPENDIX   B 

Derivation of Hugoniot relation   ej - e0   -     I j  (v0 - v^) from 

the three conservation jump conditions. 

Conservation of mass,  Equation (4), is 

m   =    p0(u0- U)    ~-   P'^ux - U) (B-l) 

ii m 0r uo   " U   =    -JZ   ''   m Vo 

since (v   =    ——■ ) 
P 

so, uo   =   mvo   +   U 
(B-2) 

m   =    mvi   +   U 

the momentum Equation {A-7) then becomes 

p1  - p0   =   m (u0 - uj)   =   m [(m v0   +   U) - (mv1   t   U)] (B-3) 

or 

Pi " Po   s    m2 [vo " vl] 

multiplying by   |yo   +   vj     • 

[Pi -  Po]   [vo +   vl]      +   m2   [vo2 - vi2] 

but m2   =    p 0
2 (up - U)2   =     p j2 (Uj  - U)2 

1 2 so -    2    (uo - U)    .   .   . 
vo 

(Pl  " Po)    (vo + vl)    =       [<uo "  U)2    -    (ul  -U)2] (B-4) 

The energy Equation (6) is ' 

m H"   Uo2 ! eol   • + PoUo   =    'm   \~2~   Ul2 + eii   '    PlUl 

by using   u     =       (u - U)   +   U ^and   u   «   m v   +   U   this becomes 

mj  e0   +   ^- (u0 - U)2   t   (u0 - U)   U   +   ^- U2i  +   p0 [m_v0+ u] 

=   mje1   +   —    (uj   -  U)2   f   (u1 - U)    U   +   J—    U2| + p^m v^ u] 
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but by conservation of momentum (A-7) 

U  [m u0   +   pj   =   U [m u1   +   pj 

leaving only 

-L-    (un - U)2    +   en   + Povo I     3        m     j_i_    (Ul   -   U)2     +     6!      +     pyvA 

-L.   [(u0 - U)2   - (u! - U)2]   =   [ej -e0] + [p^ - p0v0] 

But the first term is known in terms of thermodynamic variables by the above 
relation (B-4),   so, 

-J-    [pi  " Pol    Po   +   vi"!       =    je:  - eo]     +   pivi  - p0Vo 

by multiplying out and collecting terms this becomes 

Pl     (VQ - vj)     +        po (v0 - vi)   = ei - e0 
2 2 

or,  finally, 

Pl+Po 
(v

0 " vl)   '   el " eo 
(B-5) 
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HYDRODYNAMICS APPLIED TO HYPERVELOCITY IMPACT 
II.    THE ROLE OF MELTING AND VAPORIZATION IN HYPERVELOCITY 

IMPACT 

A.   E.   Olshaker and R.   L.   BJork 

The RAND Corporation 
Santa Monica,  California 

I.    INTRODUCTION 

During the portion of the hypervelocity impact wherein the material is 
severely compressed and under tremendous pressures,  the state of the material 
does not play a very important role.   The material strength is so small compared 
with the   pressures generated,  and the heats of fusion and vaporization are  so 
small compared with the specific internal energies which appear, that these fac- 
tors cannot affect the process in an important way.    However,   in the later stages 
of the process,  when the pressures and specific internal energies fall to low levels, 
the condition of the material can become important.    One should focus his attention 
on the state to which the material reverts after the severe compression is over, 
and expansion back to low pressure has occurred.    It is not necessary to devote 
much attention to the precise point at which phase changes occur during the expan- 
sion,  which is fortunate,  since the determination of this information is very diffi- 
cult. 

If the material were compressed adiabatically,  and then expanded adiabati- 
cally there would be little residual heating.    However,  the material is first com- 
pressed by a shock,  and in this process the entropy is raised.    In the subsequent 
adiabatic expansion the entropy is unchanged,  so that on return to low pressure 
the material has a greater entropy than it began with.    It can be shown quite 
generally that the entropy excess increases rapidly with shock strength,  depending 
on the third and higher powers of shock strength.  "'   Shocks of low strength will 
leave the material in the solid state,  but heated to some degree.    Stronger and 
stronger shocks lead to fusion, heated liquid,  vaporization,  and superheated vapor 
as the final state.    The aim of this paper is to discuss the final condition of the 
material as a function of shock strength,  and to illustrate some effects on the 
hypervelocity impact process. 

II.    EQUATION OF STATE AND THERMODYNAMIC CONSIDERATION 

The thermodynamic equation of state which is employed by the Los Alamos 
workers is the Mie-Gruneisen approximation,  calculated in the vicinity of the ex- 
perimentally measured Hugoniot curves.    For this case the equation takes the 
form 
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P - PH   '   ^T (e " eH) (1) 

where   P   is the pressure,    v   is the specific volume,    e   the specific internal 
energy,  the subscript   H   denotes points on the Hugoniot, and  7   is the Gruneisen 
ratio, which relates the change in frequency of the thermally oscillating atoms in 
a crystal to its compression.   W>d>*'   The variation in   7   with volume can be 
obtained experimentally.    Since   Pu   and   e,,   are on the Hugoniot, they are func- 
tions of volume only, as is 7  by definition.    Therefore, differentiating with respect 
to temperature, 

(-^■^ M- 
But|—    I     =   Cy,    the heat capacity at constant volume, and r^psi       =     ßlK, 

where    ß  -    — I j^A , the volume coefficient of expansion of constant pres- 

sure, and K   = -— la Ftr.    ' t'le isothermal compressibility.    (See any 

1 ß 
thermodynamics text.)   Therefore,   rr -      rrr, is the relation between the 

statistical mechanics and bulk thermodynamics of a crystal.    Based on these values,-, 
at standard conditions and the theoretical variations of 1  with volume.  Los Alamos 
presentations of two typical   7 's versus   v/vö   are shown in Figure 1.    The curva- 
ture of the copper 7  arises from the theoretical variation, while the straight line 
for the lead is a result of the assumption that   7 /v   is constant.    This assumption 
is made for the following reason.    For the case of zero pressure,  the theoretical 
variation of 7   can be combined with the experimental Hugoniot data to furnish an 
absolute value of 7  which can then be compared to the zero pressure value known 
to be correct from the experimental thermodynamic values.    For copper this 
theoretical-Hugoniot 7   is 1. 99 while the thermodynamic value is 2. 00, and for 
most other metals the agreement is within 14 percent. ^'   This agreement at zero 
pressure gives some justification for the use of the theoretical variation at the 
higher compressions.    However,  for the three elements gold,  thorium,  and lead, 
the zero pressure values do not agree;   e. g. ,   for lead the theoretical-Hugoniot 
7   is 2. 03 while the experimental-thermodynamic value is 2. 77.    For these three 

materials    7 /v,    which is also equal to (dP\  by differentiation of Gruneisen's to /dP\   1 
\^7v 

equation,  is assumed to be constant at the thermodynamic zero pressure value,  and 
in fact this is not too far from what the theoretical variations amount to on the other 
metals.    To quote:    "it is,  of course,   clear that the calculated values of  7   ,  at high 
pressures,  are not very accurate.    In regard to calculated   P-v   curves,  on the 
other hand,   7   is used only to estimate the small offsets (typically one percent in 
volume) from the experimental Hugoniot and errors as large as 25 percent in the 
offsets (i. e. ,  approximately 25 percent in  7   ) lead to uncertainties which are only 
comparable to probable'errors in the experimental curves.    Temperature increases, 
calculated along constant-entropy curves,   reflect an error which is roughly pro- 
portional to the volume average error in 7   .    The use of the correct 7    at normal 
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Vo 

Figure I.    Gruneisen Ratio as a Function of Volume for Lead and Copper. 

volume and an experimental additive term in the listed temperature (T = 0 at 
P » 0   on the adiabat through the point) then lead to temperatures which should be 
reliable to 10 percent or less of their centigrade values. "^6' 2)   Following is the 
method used to calculate the excess internal energy imparted by a shock and 
adiabatic expansion.    In Figure 2 point 1 is a point on the Hugoniot having coordin- 
ates   PH,  and   vj.    Note that for the case of material at rest and with zero energy 
before being shocked,  the Hugoniot relation, 

H 
-H "T-   (vo " vH) (3) 

shows that the specific internal energy of the shock compressed material is equal 
to the area of the dashed triangle.    The energy that is returned by the material 
in   P - v   work is the area under the adiabat,  and because of the irreversible 
losses in the shock this is less than the area   A.   It is evident from this figure 
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Figure 2. Qualitative Relationship of Hugoniot and Adiabat,  Illustrating 
Method of Calculating Internal Energy after Shock Release. 

that the differences between these areas are small compared to the total areas, 
and that the theories which postulate kinetic energy of impact going entirely into 
melting,  or "breaking of chemical bonds, " are over-estimating the transference 
of energy into residual heating since the return of the work of expansion is 
neglected. 

In order to calculate an adiabat from the Hugoniot,  one simply integrates 
numerically from any desired initial shock point,   using the Gruneisen equation and 

PHi the known  1   .    Starting at point 1,  where   e,    = *    (v0 - v^j  ) 

by the Hugoniot relation,  one desires the value of internal energy at some expanded 
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incremental volume above   v^    Gruneisen's equation gives   P2 ■ PJJ   + 

^2-3 ";! 

(eo - eu )•    But since the expansion is along an adiabat,  or constant 

process, the first law of thermodynamics gives 

dQ = de   t   Pdv = 0 (4) 

and so 

Ae1_^2   ='P1_^2    Avl-*-2 (5) 

Pl—2   ^vl—2 (6) 

This fixes   vo   and 02,  so that   P2   may be calculated from the equation of state. 
In this manner,  by extrapolating the adiabat ahead of each point so that   P     for 
the next increment can be evaluated,  the entire adiabat is calculated and one ob- 
tains a final internal energy at zero pressure after the entire process is com- 
pleted and the material has become over-expanded to   vf  by the irreversible 
heating.    Since the heat capacity at constant   (zero)   pressure is known versus 
temperature,  this resulting internal energy is readily converted to a final tem- 
perature.    That is,  since the state at   v^   could be reproduced by either the 
illustrated shock-expansion process,  or simple heating at zero pressure from 
v     to   v.,  the expression 

Tf 
ef     eo   =       /* Cp (T)   dT (7) 

T 1o 

permits the evaluation of   Tj   from the computed   ef. 

For the calculation of the rise in temperature along the adiabat going 
back up from Tf @ v^ and P = 0 to a point 1 oh the Hugoniot, one uses the 
TdS   identity in terms of   T   and   v, 

/8P> 
TdS   =   CvdT   +   T    (-j^-j      dv   =   0 (8) 

or 

\av/s cv        \JT/v 
(9) 

if phase changes are neglected.    But from the Gruneisen equation 

«P^ 7 

«T/v v 
Cy (10) 
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• 

so 

'aT\ t T (11) 
8 Wj 

T   =   T-  exp 
/ vf 

JL   dv 
V 

(12) 

along an adiabat, or constant entropy process.    By these methods,  Los Alamos 
workers have calculated in detail the values of the shock pressures which are just 
great enough to result in expansion back to melting. ^ '   Figure 3 illustrates some 
zero pressure temperatures (after shock and subsequent expansion) versus the 
shock pressures which they have expanded from.    The flat portions of the curves 
are where the excess energy is going into the fusion,  or melting, instead of the 
raising of temperature, and therefore the shock pressure at the start of the flat 
portion is that which causes incipient,  or beginning of,  melting,  while that at the 
end of the flat portion is that which causes complete melting.    (It appears,  inciden- 
tally, that in this pressure range the temperature versus shock pressure after 
fusion is linear for everything but lead. )   For those metals for which this Los 
Alamos information is available, Table 2 shows the shock pressures for both 
incipient and complete melting,  as well as the minimum impact velocities which 
just cause these pressures with similar material, steel, and aluminum projectiles. 
For tungsten,  molybdenum,  titanium,  beryllium,  and magnesium,  incipient melt- 
ing has not occurred in the pressure ranges tested, and probably will not occur 
until a similar material impact velocity of at least five kilometers per second, by 
considerations of melting temperature and density. 

For iron and aluminum,   less detailed thermodynamic data is available 
for this calculation.    The final zero pressure energies resulting from the com- 
plete equations of state are not known with as much confidence as other variables 
which are needed for the flow problem.    To symbolize this,  the aluminum curve 
is dashed in Figure 3.    Also,  the lower energies are known less accurately than 
higher ones,  so an attempt is made to calculate only complete melting in these two 
metals,  and not incipient melting.    The liquidus temperature of 2024 aluminum is 
660° C at one atmosphere.    The internal energy required to achieve complete 
melting is the integral of the specific heat times the differential temperature,  added 
to the heat of fusion.    For this analysis,  assuming the specific heat is constant is 
more than adequate.    Therefore,  usiny data from Metals Handbook,   1939, 

emelt   =<-24)   (6400)   +   93 = 247    ~'~~-~-     = 1010 ergs/gram. 

This corresponds to a shock pressure in aluminum of roughly . 9 of a megabar. 
A similar analysis for iron gives a shock pressure of two megabars to cause 
complete melting,  and this is compatible with approximate thermodynamic data 
published in Reference 2.    Table 3 gives the impact velocities for estimated com- 
plete melting in aluminum and iron. 
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Figure 3.    Temperatures After Shock Release for Four Metals. 

III.    INFLUENCE OF VAPORIZATION AND MELTING ON HYPERVELOCITY 
CRATERING 

As discussed in the 1958 paper,   '5)   the hypervelocity cratering process 
proceeds in two stages: 

(11   The shock generated on initial impact races through the target 
with diminishing intensity. 
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TABLE 3 

Impact Melting   Fe, Pure Al 

Target 
Material 

Density Liquidus 
Temp. 
(0K) 

Shock 
Pressure 
Complete 
Melting 

(Mb) 

Similar 
Material 

Impact 
Velocity 

Fe.  Proj. 
Impact 

Velocity 

Al Proj. 
Impact 

Velocity 

Iron 

Aluminum 

7. 84 

2. 78 

1810 

660 

2.0 

0. 9 

5. 9 

6.6 

5. 9 

3.0 

8. 6 

6. 6 

Incipient Melting of Pure Aluminum 

Shock Pressure Similar Material Fe Projectile 

Pure Aluminum 6Mb 5. 0 km/sec 3. 8 km/sec 

(2)   The material behind the shock then flows and generates the crater on 
a much longer time scale. 

As a result, the material flow which generates the crater always occurs 
in a medium which has been conditioned by the shock, and it is this conditioning 
which we will now discuss. 

As an example, consider the case of a square cylinder (length equals 
diameter) which moves along its axis and strikes a semi-infinite target at normal 
incidence. This problem has cylindrical symmetry, and we shall consider con- 
ditions along the axis of symmetry. Figure 4 shows the peak pressures produced 
by the shock along the axis as a function of depth. The units of depth are given in 
terms of the characteristic dimension of the projectile, d, and we shall call this 
the scaled depth. 

The initial impact of aluminum on aluminum at 20 km/sec produces a 
pressure of about 4. 9 Mb.    This pressure persists along the axis to a scaled depth 
of about 0. 7,  at which time a rarefaction wave overtakes the shock.    Under the 
influence of the rarefaction wave and the lateral expansion which also begins at 
that time,  the shock pressure subsequently drops with about the -1. 2 power of 
depth.    At a scaled depth of 4. 5,  which is somewhat greater than the final crater 
depth in Reference 5,  the peak shock pressure is about 0. 5 Mb.    Although the 
graph is terminated at this point,  the shock does propagate beyond this depth, and 
is in fact the agent which would cause spallation were it to encounter a free surface. 

Also shown in Figure 4 is an estimate of the temperature to which the tar- 
get material comes upon expansion back to zero pressure after the shock has passed. 
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At scaled depths less than 2. 8 the material returns to a liquid state which is 
hotter than the melting temperature of 930° K.    Between the scaled depths of 
2. 8 and 3. 4 the material will be a mixture of solid and liquid, and below a depth 
of 3. 4,  it is a solid,  heated to the temperature shown in the graph. 

At the instant of time when the shock reaches a scaled depth of 2. 8, the 
bottom of the forming craier is at a scaled depth of about 1. 7.    Consequently, 
the subsequent material flow is into a target having the temperature distribution 
shown in Figure 4.    Some important implications may be derived from these 
considerations: 

10 

«1.0 

o o 

41 a. 

Liquidus 

Solidus 

0.1 

5C 
e 

1200   • 
1000 | 

800 

- 600 

a. 
E 
•» 

Scaled depth (r/d) 

Figure 4.    Peak Shock Pressure and Temperature After Shock Release 
as a Function of Depth Along the Axis for Aluminum on Alum- 
inum at 20 km/sec. 
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(1) The process is truly hydrodynamic to a scaled depth of 3.4,  and 
below this the validity of the hydrodynamic approximation is en- 
hanced by the fact that the target material has been intensely 
heated.    A comparison of recent experimental data and the crater 
estimates on the hydrodynamic model'6'  are given in Appendix A. 

(2) Theories which seek to include the role of material strength with- 
out including these heating effects seem doomed to failure at the 
higher velocities. 

(3) Those theories which attempt to assess the effects of material 
strength and viscosity by calculating their effects on the initial 
shock wave seem incorrectly oriented for two reasons:    (a)   the 
dynamic yield strength can have little effect on shocks of greater 
than 0. 5 Mb,  and   (b)   the viscosity of the actual material is orders 
of magnitude less than the artificial viscosities which are used in 
the numerical calculations,  yet the inclusion of these (hopefully) 
still leads to the correct shock strength and position.    Thus, 
reasonable values of dynamic yield strength and viscosity cannot 
have much influence on the initial shock in this problem.    The 
important physical quantity is the strength of the material after 
conditioning by the front-running shock,  and its influence will be 
felt in governing the material flow which finally forms the crater. 

(4) The "energetic" theories of hypervelocity cratering which assumed 
that all of the projectile's kinetic energy was absorbed in bringing 
the crater and projectile material to exactly a state of fusion are 
seen to be on an incorrect physical basis.    Figure 4 illustrates well 
the fact that a great deal of the crater material has been given 
much more internal energy than is necessary to melt it.    In fact, 
at 72 km/sec,  an appreciable amount is vaporized.    In general, 
the average specific internal energy imparted to the crater material 
increases rapidly with impact velocity.    Consequently a penetration 
theory based on energetics cannot lead to a "2/3 law" (crater vol- 
ume proportional to projectile kinetic energy).    When the increase 
of average specific internal energy is taken into account,  the value 
of 2/3 will be reduced. 

APPENDIX A 

Comparison of Hydrodynamic Crater Calculations with Recent Experimental Data 

The comparison is made in Figure A-l,  wherein the abscissa is the im- 
pact velocity and the ordinate is P/d,  the ratio of the penetration to the character- 
istic dimension of the projectile.    All of the information pertains to impact of 
aluminum projectiles on aluminum targets. 

The upper group of experimental data representing craters made in com- 
mercially pure (1100) aluminum is all due to Atkins.  ^ '   Atkins had previously 
concluded that an unsaboted aluminum projectile loses an important fraction (up 
to 45 percent) of its mass by ablation in the gun barrel,  and so regards his point 
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o Atkins, 3rd symposium 

▼ Atkins, 4th  symposium 
a Atkins, personal communication 

Nov. 10, I960 
^ Collins and Kinard Ref. 8 
• Atkins, personal 

communication 
Nov. 18,1961 K? ^ 
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Soft aluminum targets (llOO) 

Hard aluminum targets (2024) 
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Figure A-l.    Cartesian Comparison of Theoretical and Experimental 
Penetration - Aluminum on Aluminum. 
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Figure A-2.    Log-Log Comparison of Theoretical and Experimental 
Penetration - Aluminum on Aluminum. 

100 

cited in Reference 6 as questionable.    The data shown here were all taken using 
saboted spherical projectiles.    The theoretically predicted craters '  ' are shown 
as the shaded region in Figure A-l,  and the experimental points appear to be 
entering this region in a satisfactory way. 

The lower group of experimental data represents craters made in stronger 
aluminum alloys (2024,   2018). (7,8)   As one would expect on intuitive grounds, 
these craters are smaller than those made in the 1100 alloy at the same impact 
velocity.    Some of these data were taken with spherical projectiles and some with 
square cylinders (length equals diameter).    In all cases,  the projectile diameter 
was chosen as the characteristic dimension.     Treating the data in this way resulted 
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in good agreement, in spite of the fact that a cylinder weighs fifty percent more 
than a sphere having the same characteristic. 

The data on the cartesian graph of Figure A-l is replotted on a log-log 
graph in Figure A-2.    The two groups of experimental data are obviously converg- 
ing on the new plot,  which implies that the percentage-wise difference in crater 
depth is decreasing at higher velocities.    For example, at 2 km/sec, the craters 
in 1100 aluminum are almost twice as deep as those in the stronger alloys,  whereas 
at 5 km/sec they are only deeper by a factor of about 1. 25.    When one considers 
that the strong alloys have strengths about a factor of 5 higher than the 1100 alloy, 
and that this results in only a 25 percent change in crater dimension,  it is clear 
that the penetration is quite insensitive to strength.    Summers ^' has reported on 
the same effect, viz. ,  the decrease in strength effects with increasing impact 
velocity,  for copper. 

Since the hydrodynamic model neglects the material strength, it is only 
natural that the 1100 data should come into agreement with it at a lower impact 
velocity than the stronger alloys. 

If one were to naively fit the two sets of experimental data by straight 
lines on the log-log plot and then extrapolate these lines to high velocities,   he 
would see that the two lines would cross.    This would lead to the questionable 
conclusion that a larger crater is produced in the 2024 alloy than in pure alum- 
inum,  for the same projectile at impact velocities above the crossing point. 
Besides illustrating the dangerous risks incurred in this type of empiricism, 
this construction indicates that the behavior of one set of data must change with 
increasing velocity.    It is our belief that the hard aluminum data will exhibit a 
negative second derivative on the log-log plot and ultimately fare into the theo- 
retical region just below the soft aluminum data. 
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INTRODUCTION 

In a previous paper    a rational theory of penetration by ultra high-speed 
penetrators was presented.    To summarize;    the ultra high-speed process was 
defined as one in which stress waves do not radiate significant distances from the 
penetrator during its primary penetration stages.    Because of this,   large amounts 
of energy are transfer red to the particles in the neighborhood of the particle- 
target interface;    resulting in a "fluidizing" of these particles.    These particles 
are then swept radially out of the path of the penetrator,  between two essentially 
rigid members (undeformed regions of target and penetrator).    Large shear 
forces can be associated with this high radial velocity of the "fluid" layer,  and 
these forces will in turn dissipate large amounts of energy into the neighboring 
undeformed regions.    Consequently,  the fluid-zone region can be thought of as 
advancing through the target,   together with the projectile.    In general this zone 
may change its size and shape during the process.    Further,   it should be under- 
stood that even though the fluid-zone will advance through the target with the pro- 
jectile,  the particles associated with it at any instant will not;    they will be swept 
radially out nf the zone by the unbalanced radial forces. 

Based on the above mechanism the equation of motion for a rigid-pene- 
trator deformable-target combination was derived;   and two auxiliary relationships 
were examined in some detail.    Once these are completely formulated it is possible 
to proceed with the complete solution of penetration  problem,  and to obtain experi- 
mental correlation and/or evaluation of any undetermined material or fluid-flow 
constants. 

In the present paper several different fluid-zone "growth" laws are formulated 
and the equations of motion are solved using a particularly simple viscous relation- 
ship.    Based on these solutions it is possible to obtain a rather detailed understanding 
of the penetration process.    Additionally,  coefficients to be determined by additional 
experimental and/or analytical work are indicated,   so that absolute values can be 
assigned to the associated time and distance scales. 

The work of this paper indicates that much more remains to be done in the 
refinement of input data from both an experimental and analytical point-of-view. 
However,  even in the absence of accurate material information,  the theory is 
capable of predicting order-of-magnitude results.    Based on this it will be fruitful 
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to extend the concepts contained herein to the case which also allows a deform- 
able penetrator,  and to additionally  examine  the  secondary  penetration 
phenomenon. 

ABSTRACT 

In this paper additional equations are presented for the solution to the 
problem of a non-deformable ultra high-speed penetrator striking a semi-infinite 
deformable target.    These,  together with the ones of a previous paper,  provide 
a complete mathematical description of a penetration model.    Based on these 
equations,  and on an assumed stress-velocity relationship,  various "grov/th" 
laws are postulated and solutions for penetration distance,  velocity and time his- 
tory are obtained.    From these it is seen that although the phenomenon is sensitive 
to the exact magnitude of physical parameters,   it is much less sensitive to a 
variation in the formulation of the "growth" law. 

The paper suggests many areas in which experimental work would be 
fruitful,  and additionally provides a model capable of extension to the deformable- 
penetrator deformable-target problem. 
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NOMENCLATURE 

0    = radius of penetrator 

'rod     m radial shear force 

h    - instantaneous fluid-zone thickness 

"m    3 quasi-steady state fluid-zone thickness 

h    * instantaneous rate of growth of fluid-zone thickness 

H* = dimensionless fluid-zone thickness    (      ^h,,       ) 

k, 

•<; 
■\ 

shear law coefficients 

f.    *   length of penetrator 

M f = fluid-zone mass 

M mP = penetrator mass 

r * radial coordinate of element in fluid-^one 

t = time 

^0 = average radial velocity of fluid "particle" 

X = axial penetration distance 

X,X = penetrator velocity,  acceleration 

X « fluid-zone front velocity,   into target 

xo = penetrator striking velocity 

* X 
X • dimensionless penetration distance (        /^       ) 

fot. = maximum dimensionless penetration distance ( tot./h    ) 

ß - coefficient associated with velocity profile 

fl = viscosity of material in fluid-zone,   in its instantaneous state 

♦   Additional subscript indicates case under consideration. 
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p #«   =    mass density 

'L        =   shear stress on lower interface 

Tu      =   shear stress on upper interlace 

**   Subscript    _     ,    f       refers to penetratcr and fluid,   respectively. 
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ANALYSIS 

I.     Basic Equations 

The basic equations were derived and discussed in Reference 1;    so 
that they will be introduced with Little further discussion in the present paper. 

A -  Equation of Motion 

The equation of motion can be written as 

".'♦^[UVd-^H^o (i) 

Using the shear-velocity equations indicated in the following section,  this 
equation becomes, 

.. rMp      a , a \M .    3   ./  o \* x*     „    k*   / atf:        i9  , o \ k, 
(2) 

B - Shear-Velocity Equation 

We will take a shear-velocity relationship on the upper interface of the 
type 

Tu = kt •«■ k2 
JJo 

h (3) 

and that on the lower interface to be, 

T,  = k' + k' -^ 'L — N ^ K2    h (4) 

which accounts for a constant and a simple viscous term.    It is felt that additional 
terms or further refinement is not warranted at the present stage of the inves- 
tigation;    although modifications and generalizations can be made later,  as 
experimental evidence indicates the need. 

C - Fluid-Zone  "Growth" Relationship 

Growth laws of the type 

• / 
X bnT.." 

(5) 
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Fr0(j. sas Tj.      2      sa j    TLrd^>dr 

T   a2d^       r0.     ... ua-^— = j   u0rd^dr 

(7) 

(8) 

Using the relationship for     U0      from the referenced paper, 

"a = TFT * O) 

and equation (4) as required in equations (7) and (8),   there results: 

f    —   k'   +   k' -2- i 
T"-   _   K,   I"   h2 3h2 X (10) 

u«  =    3FX 
(11) 

Thus in the present paper we will introduce the basic growth laws,   represented 
by equations (5) and (6),   in the form 

«'= M«.^ Kitf-i)n (12) 
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are investigated.    As discussed in the referenced paper,  they have physical 
justification.    In addition we have also investigated a growth law of the type 

*'- cn(ä" (6) 

which,  although it is closely related to laws of the type indicated in equation 
(5),  has some additional mathematical simplicity. 

In the usage of "average" shears or velocities one has a choice;    subject 
to experimental verification.    For purposes of mathematical simplicity and 
physical reasonableness we have defined these as the average shear stress or 
velocity acting radially outward between the center and outside radius,   over an 
incremental element;    that is 
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i'=C."(Ä*),n 
(13) 

D - Fluid-Front Motion 

The relationship between the fluid-front velocity,  the fluid region gr:.vth 
and penetrator velocity is given by   , 

x' =  x +   h (14) 

E - Limitation of Present Investigation 

For the purposes of the present investigation we will limit ourselves to 
the cases of kj = k^=0,    n=l,   2,    m = l.    This serves to sufficiently simplify 
the mathematics so that the investigation can be completed without recourse to 
extensive numerical equation-solving,   with its associated limiting to special 
cases;    thus the overall physical phenomena can be simply understood from both 
a quantitative and qualitative viewpoint.    The generalization of these results is 
the subject of future work.    Thus the basic equations to be used in this paper are. 

General 

i; [MP  + Af^f 1 + 2.a/^.\2 x2   .  0    k2   ,av«. x LM, + a u' j+ is ^IP ir + ^ i^ hr)x = 
(15) 

Special 

Case I 

x' = i.+ h =   Mijjä X 
(16) 

Case II 

*'=* + h= b2k^xa 

(17) 
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Case III 

X ' i  +   h  =    C,-^ X     . (18) 

II - Fluid-Zone Build-Up 

A - x-h relationship 

In both cases I and HI we can eliminate time directly from the associated 
equations (16) and (18),  and obtain solutions for the relationship between h and x. 
Defining dimensionless penetration distance and fluid-zone thickness  */>••• r ^   . 
hy},^ = H     .  and taking initial conditions of X (0) = H (0) = 0,  there results: 

Case I 

X--HI + -Hn(^r) 

where 

Case III'' 

3 

■X=-Hm + ln(7^    ) 
m (20) 

where „ _ 
hin«,!=    3 

The interpretation of     h^    becomes very clear when we evaluate the maximum 
value that H can take.    Examining equations (19) or (20) it can be shown that H 
is a monotonically increasing function of X,   for non-negative X.    Further its 
maximum occurs at X = oo   ,  and is H = 1 or h - ho,      .    Thus h»      is the maxi- 
mum fluid-zone thickness that can exist. 

In Figure 1 we have plotted the relationship between X and H for the two 
cases under consideration. 
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H 

FIG.   I 

It is particularly useful and important to note that the fluid-zone build-up 
is quite rapid;    reaching 83% or 96% of its maximum possible thickness by the 
time the penetrator has traversed one fluid-zone thickness. 

B - x - h - t relationship 

In both the above considered cases it has been possible to eliminate time 
(t) and directly obtain the x - h relationship;    but this will not generally be pos- 
sible.    Since it will be most useful in the work that follows,   a technique will be 
presented for evaluating the nature of the fluid-zone build-up,   in a specific 
situation.    This result will form the basis for an "a priori" assumption which 
greatly reduces the complexity,  and increases the understanding of the final 
solution.     Finally the validity of this assumption is subject to an "a posteriori" 
verification.     The evaluation technique will be illustrated in all three cases 
under consideration.     For Cases I and III the technique can be immediately 
evaluated by comparison with the solutions already obtained;   at the same time 
providing a standard against which Case II results can be compared. 

The basis for the above mentioned technique is to evaluate the fluid-zone 
build-up for a penetrator moving at constant velocity.  *   Then,   if it can be shown 
"a posteriori" that this full fluid-zone build-up occurs before there are appreciable 
velocity changes,  it is valid to assume that a quasi steady-state process domin- 
ates;    so that there is a unique relationship between instantaneous fluid-zone 
thickness and velocity.    Assuming that it is valid and introducing this relationship, 
the equation-of-motion can be integrated.     This procedure neglects the effects of 
the transient initial fluid-zone build-up as compared to those of maintaining of 
the full zone.    In some cases it is possible that the transient build-up may be 
important;    especially with a short deformable penetrator.    As indicated,   these 
are subject to an "a posteriori" check;   a complete coupled-solution being 

*See Appendix for a more accurate technique that verifies this approach. 
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required only in those cases where this simplified approach fails.    However,  it 
should be noted that this cotipled solution of the equations can always be obtained 
by recourse to numerical integration techniques. 

Case I   - 

Introducing   x = x c),   we can integrate equation (16) directly to obtain H as 
an implicit function of   t, 

X.t =  -H, ■£n V   l-Hr/ (21) 

where 11,   X are defined in conjunction with equation (19).     Equation (21) also 
follows triva'ly from equation (19),   since 

X = x0t 
(22) 

Case III 

In a similar fashion we can show 

X.t   =   -Hm  + t\ 

where    11   is defined in conjunction with equation (20). 

(23) 

Case II 

In this case,   introducing       X — X,      into equation (17) we obtain 

X.t  = -Hn + -Irin (-f^+f ton"'H,, (24) 

where 

L'.xl v-m1.: (25) 

Using equation (22) it is possible to plot all three cases on the   X-H   graph; 
bearing in mind that Case II is only exact for the case of   x    - constant.    The other 
cases have no such restriction.    These results are shown in Figure 1.    From 
these it is seen that for Case II,   essentially 97% of the steady-state fluid-zone is 
built up within the time the penetrator has traversed one-half the distance of that 

250 



i 

PENETRATION BY HYPERVELOCITY PARTICLES 

zone.    This is much faster than for Cases I and III.    Thus,   with the exception ol 
the transient effects that occur in the short time of this build-up,   it is reasonable 
to base further analysis on the quasi steady-state condition: 

(26) 

To understand the reason for this rapid build-up we need only examine 
equations (16) to (18) inclusive,   in the region of   h ~  0;    i. e. ,   at the start of the 
process.    Since    X  £   X a^ '■'lat t-ime we see '^at 

h « x" 
(27) 

where 

Case 1 

Case II m = 4 

Case Hi n =  1, 1 

Thus,   initially the rate of film build-up is infinite and remains quite high until 
h   -»   h,,      .       Further,  at any specified   k   this initial rate of build-up is highest 
for Case II,   second for Case I and least for Case III;    because of the exponent   m. 

The quasi steady-state solution is adequate if   x   does not fall off too rapidly, 
compared to the build-up rate.     However,   it must be carefully understood that this 
does not imply that the initial build-up stage can not be important;    it only implies 
that its consideration adds additional mathematical complexities.     For the purpose 
of understanding the qualitative behavior of the penetration process,  this transient 
behavior is not essential to the present paper and will be neglected.    The main 
effect of this transient build-up will be to increase the shear forces during the 
time interval associated with the decreased zone thickness.    This will increase 
the force tending to retard the forward motion of the penetrator during this time 
interval.     Hence,   the results of this paper would be modified by an additional 
velocity decrease during the time of fluid-zone build-up.    The magnitude of this 
decrease and conditions for its neglect or inclusion to the present work is a sub- 
ject of a later paper. 

Ill - Penetrator Motion 

A - Discussion 

In the following work we will investigate only those cases in which the 
fluid-zone build-up is rapid compared to the velocity decay in the same interval. 
More precisely,   in this paper we will consider,   in detail,   cases where XJ0J  >> I 
and       AX       << X over the region 0 ^ X ^ I     .    This is shown in 
Figure 2. 
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O   I 

FULL FLUID  ZONE THICKNESS 

"a 

tot. 

FIG.   2 

Associated with this requirement we have the corollary,   that for the sig 
nificant part of the penetration,    H = 1;    independent of   X.    In Figure 3 we 
represent the actual and ideal   H-X relationships. 

H 

■ IDEAL 

^_ 

ACTUAL 

tot 

FIG.   3 

Further,   even though   H =  1 throughout the penetration process,    h   need 
not be constant because of the variation in   h«, 

In particular.   Cases I and III have   h,,,    defined in conjunction with equations 
(19) and (20),   Case II has an   hoo      which is generalized from equation (25) to become 

. (^)V (28) 
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m|< 
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.-|., 
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Because of its increased mathematical complexity we will treat Case II in detail 
only for the case of 

^(f)'»' 
2 

(29) 

which appears reasonable for a wide class of penetrators. 

As an alternate approach,  it can be noted that since   hj. varies quite 
slowly with changes in   x,    that it is quite reasonable to consider   h — ^      constant 
over a range of   x   and then,  to simply integrate the equation of motion over that 
region.    The motion of the penetration being found by suitably combining several 
such adjacent regions,   matching end points. 

B - Constant Fluid-zone Thickness (h) 

For constant   h,    equation (15) can be written as 

Ax + Bx2 + Cx = 0 (30) 

where 

which can be integrated in terms of "l" to yield 

*•"   [|+(BX£W|_e-X»)J   * 

which for very small   .£. •      can be represented as 
A 

or in terms of "x" 

xo = i*r[o+c)« -'J 
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which for 

and 

becomes 

BX. 
»I 

^ ?t 0(o) 

-5 
(35) 

BX .     X. 
(36) 

for all 

Further 

X.           Bx, 
C 

xB 
A 

= /nri+^(l-e-c/0 

J|-=Jen i+fM 

•'] (37) 

(38) 

for 
-*-t«l 

Equation (34) can be used to estimate the maximum depth that the penetrator can 
reach.    At this maximum 

Introducing these conditions into equation (34) we obtain the penetration associated 
with the cut-off velocity: 

B. 
A 

I + Bx. 

t+(^)(^-n) 
(39) 

which reduces to equation (36) with the substitution of   x for   x,   under the mm 
condition; 

Bx.  x 
A      x. 

mm 
» I 
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and to B ,     B 

(40) 

when _B_ •   jCjnift 
A    *• ^ << X. 

This leads to the solution for maximum depth of penetration,   or a useful relation- 
ship to aid the experimental evaluation of the parameters A,   B,   and C. 

C - Variable Fluid-zone Thickness (h) - Case II 

We will limit our Case II considerations to small fluid-zone thicknessj 
in addition we will only examine those cases for which inequality (29) is satisfied. 
This,   in essence,  does not allow the condition of   c —•   0    which is generally not 
useful.    In this case equation (15) can be reduced to 

X  + -5" =  0 (41) 

Introducing   h   as defined in equation (2 8) we have 

p S + -|-DX™ + ^DV'2 = O (42) 

where 

0 - ^r - X, 
/4 

hoo 
(43) 

Equation (42) can be solved to yield 

rx, 

si 

dx 

|Dxs,4 + irO^x 8i-l'2 

(44) 

The integration of equation (44) can be performed in full generality by analytical 
or experimental means.    However,  because of the order-of-magnitude of the 
parameters for the actual class of problems under consideration the intergrand 
will simplify.    It will be snown later that 

p << foi 314 

for the range of interest.    Hence for this case 
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(45) 

or from equation (43) 

2a 
/ a \ L      x x,'    J 3_/  a \ L        'X,'     J (46) 

2a\  c i 

Considering a thin film and   using equation (64),  which defines B/A for this 
case,   we have 

...[.-(tn i._ .r,-(i-i'"i (4V) 

Now we can compare this thin,   but variable,  fluid-zone solution with 
that for the non-variable fluid-zone;   as given in equation (36).    A plot of these 
two solutions,   which are more fully discussed in a later section is presented in 
Figure 4.    From this plot we can see that both solutions are sufficiently close, 
so that within the framework of the existing theory tb» additional refinement 
given by Case II is probably unwarranted where the fluid-zone is thin.    Addition- 
ally,  it is reasonable to expect that the variable fluid-zone velocity drop is 
greater than the constant (for the same initial fluid-zone thickness).    This fol- 
lows from equation (28) which shuws a fluid-zone decrease in thickness with 
decrease in velocity.    He..ce,  shear effects will be greater than those associated 
with the constant "h" case,  and the velocity will drop off faster. 

D - Evaluation of Parameters - Order-of-Magnitude 

It is useful to estimate the magnitude of the various ratios so that   x - t, 
and   x - t   can be plotted over a reasonable range of values.    It is important to 
note that these are estimates only;    the exact values of the various physical 
constants being subject to experimental and/or more detailed analytical deter- 
mination. 

1.     Estimate of k2,    h 

For estimating purposes,   we will assume parabolic flow for which. 

eüfl (48) 

where   fl   is the viscosity. 
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Comparing equations (3) and letting kj • 0,  we have 

eisp) (49) 

where   6   signifies "order of". 

Considering that the absolute minimum   Tu     is the ultimate shear stress 
of the material,  at the raised temperature,  we have 

Tu a   Tult. 
(50) 

Combining equations (9) and (48) and inequality (50) we have 

h2 <   —  (51) 
•ult. 

We should note that actually   h = f (r),  since   u   ~ 0 at   r = 0,   we expect   h~ 0 
there;    increasing with increasing r.    However,   this variation in   h   was neglected 
in the original detailed equation derivation,   so it will not be considered here. 
Instead we will consider an average   h   in the sense defined in equation (7) or (8). 
Thus 

2      -   i   V Tul,.
; 

iL < üs^ 
a   - a (52) 

where 

o     ■J   R V aT..i.' 5 ^ aTu,t/ 
(53) 

2.     Estimate of B/C 

From equation (31) and (49) 

B. 
C &) (54) 
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Introducing inequality (52) 

(55) 

3.    Estimate of C/A 

From equation (31) the relationship C/A is 

k,   / n %2 

Now we should note that 

2 eh>1 ft/ 

Mf 
+ 8 ^ fi; 

(56) 

sf » (fXf (57) 

where   Ji   is the "length of the penetrator. 

Thus k2 

A 
pa 

dt b ^f am 
Introducing inequality (52) we obtain        b 

i* pa 

i^b+j^iU*?)] ßp< 
For the "thin" fluid-zone,  defined by 

(58) 

(5 9) 

o   <<   % Ppi (60) 

C/A can be simply represented as 

(61) 

A   "    pa' ^„pp/ 

(62) 
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4.    Estimate of B/A 

From equation (31) 

A 

_2_ 
B  2o 

e^/fivni (63) m'+%f&m 
-2_ 

B. .   2a_ 
A   - 

(¥)['+|^(^)(l)] 
For the "thin" fluid-zone defined by equation (60) 

.1.   =     (_3_U^.\ (65) 
A ^2a A fi ' 

5.    Note on evaluation of parameters 

In the following evaluation we will make assumptions on   h/a on the basis 
of reasonable upper and lower bounds.    This way we can set an expected range 
for penetration distance,  as a function of velocity or time.    As more information 
becomes available,   these limits will be able to be set more closely. 

E - Numerical Evaluation 

Although there is a paucity of information available on the viscosity of 
metals in the fluid or gaseous state (especially at the associated temperatures 
and pressures) an order-of-magnitude estimate of the various parameter ratios 
will be made.    These will provide a reasonable range of values over which 
solutions to the penetration motion can be plotted.    In these we have estimated 
ranges of material and other properties as follows: 

(3 x ,o-M( 06 x ,o-») Ä   < ^ < (.oex^Ä 

slug i 
P -   "5.2 -ypr - ^p 

a =   4 'nch " -021 ft. - I T = ?       ^=| 
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The upper value of ft   is based on molten iron and the lower on water vapor, 
at standard conditions.    Actually much better values of  u   must be obtained for 

In addition,  since we have no clearcut evaluation of T an accurate evaluation, 
we will take a range of n/a 

1.0 ä -j- > I0"8 

The upper limit is taken as that beyond which the unmodified simplified theory 
apparently ceases to have validity. 

Based on this we have a range of 

.437 X I06 > -|- > 1.31 

18.2 X I0"e 5 -J£- < 54.7 X 10' 

{»•c/ft.) 

O/.ec.) 

Constant 8.04 < -|- < 72.3 X I05 C/ft.) 

The motion for the penetration is described by equations (32),   (34) and 
(37).    However,  since 5^'(, is generally quite large compared to 1,  it 
is necessary to use reduced equations.    These are represented by equations (33), 
(35),   (36) and (38) and are obtained by using the consideration that     Biv,   >> | 
and correspondingly       C/t << | 

Figures 5 and 6 present the velocity-time and penetration distance-time 
relationships.    These are graphed in a general form so that they apply for the 
entire range of larget-penetrator parameters;    subject only to the requirement 
that Byc»l which is satisfied in any real situation. 

In the application of these graphs to actual situations,   it is important 
to recall that the fluid flow phenomena is assumed valid only for the higher 
velocities;    so that the process,  as described in this and the previous paper   , 
is no longer valid for velocities below the cut-off velocity. 

From these figures we see that the percentage drop-oif in velocity is 
greatest during the first instants after impact.    This is physically reasonable, 
since the process is such that high retarding viscous and dynamic forces are 
associated with the high radial velocities;   so that initially the axial retarding 
forces are great and they drop off rapidly with the decline in velocity. 

We should further note that,   for the time intervals of interest,   the 
viscosity doesn't appear to enter directly into the problem,   since all results 
are obtained in terms of B/A.    However,   it does enter indirectly since the film 
thickness is,  itself,  a function of viscosity and B/A varies almost inversely 
with this film thickness.    Thus,  by having experimental or analytical information 
on film thickness,  it might be possible to eliminate the viscosity dependence 
requirement or else deduce viscosity information. 

It is interesting to compare some specific  numerical results obtainable 
from Figures 4 to 6.    For this we will take   x0 =   10^ ft/sec and   will examine 
the extremes of parameters presented earlier,   together with a mid-range value. 
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B'.(*) i*.^J «min/ fco -   ■*            1 »"»'"•/x. "  .05       1 

Xmox. ('") W.Uec.) Xmax. (in) tmox. (sec.)| 

8.04 8.04 x I0" 3.44 I.l x io*B 1     4.46 2.3 x 10''   1 

I02 I0T .277 .9 xio"6 .36 .I9x I0"e   | 

|   72.3 x I03 72.3 x 10* .38 x I0"3 .12 x I0'8 .496 xlO-3 .25 x lÖ"' 

Where the above tabulated results were obtained from 

_x_ 
!■« 

■5-x 1     1 
A    0       | 

.1 2.303 9         | 

.05 2.996 19         1 

We should note that it takes just as much time to change the velocity 5000 ft/sec 
near the end of the travel as it takes to drop it the initial 90,000 ft/sec;   which 
confirms our previous discussions.    We see that these results will predict per- 
foration depths anywhere from a 3. 8 x 10"4 to 4. 5 inches depending on the 
viscosity and film thickness assumed. 

Variable - h 

It was shown earlier (Figure 4) that this case does not differ-too greatly 
from that for constant   h;    in the former case the integration was straightforward 
and given by equation (46) when, 

-I-*8'4 >> -k-D 2 p 

which,   using equations (43) and (4 9) becomes 

* \ x /      a      u P   (Me 
This imposes the requirement,   on the simplified solution,   that the penetrator 
radius must be, 

tB/4        | 
a » {^)(ir)8 

©x. 
Now let us consider values for ^t   ,    p    ,  etc. ,  which make the right hand side 
of the inequality as large as possible,   giving the maximum requirement on "a"; 
that is 

ft-  = . 06 x 10'3 

/> = 15. 2 
X0 =  105 

*•/*' io , 
h/o ' lO"'3 
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Then we have, 

a >> 3.3X I0'B inch» 

which is always satisfied in the range of interest. 

APPENDIX 

Fluid-zone build-up 

It is useful to consider a more accurate technique for evaluating non- 
integrable cases,  such as Case II.    In this approach we allow for a variation 
in   x   but treat the velocity component of the growth term   (x^) as   x xQ.    This 
makes the growth term,   in equation (17),   slightly greater than might actually 
exist for variable   x.    However,  if   x   does not decrease more than,   let us say, 
25% during the time the penetrator traverses one fluid-zone,   then the use of 
xx0 instead of   x" will initially lead to an exact   h,  and will at the most introduce 
a 25% error in   h  (at the time of minimum   x).    However,  because of the use of 
the correct value of   x   in the other term of the same expression,   this error 
should be reduced.    Finally since 

-/* hdt (A-l) 

and   happI.oximat.e   departs gradually from the   hactuaj over the range of interest, 
we can expect that   happr,oxjrnale   will deviate from   h    t     i by considerably less 
than the 25%.    This estimate on the accuracy of our approximation and the range 
of usefulness is subject to an "a posteriori" verification in the manner indicated 
earlier. 

Subject to the above considerations,   equation (17) reduces to 

*=*l>^-.] CA-2) 

which can be integrated to yield 

x = -HB + T-«" \T^J +1,an Hi (A-3) 

where   h,,,    is defined in equation (25). 

This result is identical to that previously indicated on Figure I,  so that 
the previously mentioned technique based on the use of a constant velocity pene- 
trator,  is less restricted than would appear.    Further,   in other cases that we 
might investigate in later work,  both techniques will be of value. 

265 



PENETRATION BY HYPERVELOCITY PARTICLES 

ACKNOWLEDGMENTS 

I wish to acknowledge the helpful discussions concerning this work with 
Messrs.   Bill Fleischer and Jim Kymer and the additional moral and financial 
support of these scientists and of the Hyperdynamics Section and Physics labo- 
ratories at Frankford, all of which made this work possible. 

REFERENCES 

Zaid,   M. ,  An Analytical Approach to Hypervelocity Impact Mechanics:    Pro- 
ceedings 4th Symposium of Hypervelocity Impact, Eglin Air Force Base, 
April 1960. 

Opik,  Ernest,  J. ,   Physics of Meteor Flight in the Atmosphere: 
Tracts on Physics and Astronomy No.   6. 

Interscience 

266 



A MODEL OF NON-EXPLOSIVE IMPACT 
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The model of impacting to be constructed here consists,  essentially of a 
sequence of time regimes,   not always nonoverlapping.    The target is assumed 
semi-infinite in extent,  with a flat face presented to the oncoming projectile. 
The projectile itself is assumed to be traveling normal to this face.    The effect 
of the shock accompanying the projectile in its flight (before impact) is neglected 
here as it appears that this effect is likely to be infinitesimal as far as useful 
energy transfer is concerned. 

The first time regime     0   i   t    S   T|   _  begins at the luoment the pro- 
jectile first encounters the target.    At   t = o,    both target and projectile begin to 
deform,  according to the relation between their respective densities and com- 
pressibility factors.    If the impact velocity v/ere subsonic (i. e. ,   less than the 
longitudinal velocity of sound in one or the other or both of the materials of which 
the projectile and the target are composed),  then the shock waves generated would 
immediately begin to move away from the "advancing front" of impact in said ma- 
terial and will travel through this material;    as a tension wave in both the pro- 
jectile and the target.    If the impact velocity is greater than or equal to the longi- 
tudinal sound speed in either material,   the shock waves will not begin to move 
away from this "advancing front" until the velocity of this front relative to some 
point fixed in said material has become subsonic.    The deceleration experienced 
by this front is due to the increasing resistance to deformation offered by the two 
bodies;   and the energy lost by the projectile is partly absorbed in overcoming 
this resistance,  the remainder being transferred into heat,   which then diffuses 
through the two bodies and/or is dissipated into the surrounding atmosphere. 

In this latter case,   the second time regime is taken to begin at the instant 
j.    at which the velocity of the advancing front has just become sonic in the pro- 

jectile.    In the case where the impact velocity is already subsonic relative to this 
material, T.     is taken to be zero.    Within this time regime,  two processes are of 
interest     The first is the motion of the (tension) shock waves back through the 
projectile,  their reflection from the back boundary,  and their subsequent return 
to the front lof the projectile.    The second is the heating of the region surrounding 
surface of contact of the two bodies,  due to the loss of kinetic energy of the pro- 
jectile,   which ultimately can lead to melting. 

The third regime,   (and also the fourth) is taken to begin at the time Tn      at 
which the temperature in at least one local domain is "just sufficient" for melting 
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to begin locally.    It is possible that within this time regime,   the shock waves 
reflected from the rear boundary of the projectile will return, adding to the com- 
plexity of the reaction.    However,  it is expected that the disturbance caused by 
these reflected waves will be very small (see the assumption on damping of the 
waves in the treatment of regime 2),  so that these residual effects may be neg- 
lected in this first treatment.    Because of the high pressure present,  this melted 
material will be extruded,   flowing along the small space between the boundaries 
of the respective unmelted parts of the bodies and up the sides of the crater 
produced.    This flow will act to conduct more heat along this boundary,  causing 
additional melting to occur there.    A certain amount of heat will also be generated 
by the friction caused by the viscous behavior of this melted mass.    The material 
will cool rapidly as it approaches the end of this boundary,  and so will solidify 
(partly) along this boundary. 

THE CASE OF NO EXPLOSION 

First Time Regime 

Within this regime,  only the mechanics of the compression suffered by 
each of the two bodies is of interest.    Only a cylindrical bar,   of infinitesimal 
physical extent normal to the cylindrical axis is considered.    If a one-dimensional 
coordinate system(s) is introduced such that   s = 0 defines the face of the target 
initially and (such that)   s    >   0 defines *he domain of the target material,   and if 
it is assumed that the resulting compre ised area in each bar is homogeneously 
compressed and thus sharply defined,  then the following picture presents itself: 

(s;,v;) *- 
(S-.V.) 

I "(S-.VJ 

EZZZZZZZZZZEM 

ISs.V.) 

I- 
i. 

I, 
■'V,> 

FIGURE   I 

The notation   (s1^,   V'A)P   is to be interpreted as follows:    (-s'^) is the 
physical extent of the compressed region of the target material here,  and (-v^) 
is its time-rate-of-growth,  of this region,  both taken relative to the target- 
projectile interface (defined by   s' = 0 and/or   s = s^,  and denoted by   I in Figure 
1).    Similarly,   the region defined by   sj ^    s   < S3   is the compressed region 
with the bar of target material.    The "point"  s = S2   denotes where the target- 
projectile interface would be if only the target suffered compression.    The 
following quantities will be of interest: 
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Initial length of projectile:   l# 

Foreshortening of projectile:     I   - \ •■• As 
Rate-of-growth of compressed area within projectile relative to 

interface (I):  -v'4 
Foreshortening of target:    Sj 
Rate-of-growth of compressed area within target relative to I:    V3 -v^ 
Rate-of-progression of compression front within target:    vg 
Vc = V2 = v0 = initial impact velocity 
s2 = s5 + U 
s3 = s5 +1+ Ij 
sl = s5 +1 

The forces exerted across the interface (I) by the projectile and target 
upon each other may be expected to determine the time-rate-of-change of   vj = s 
to a large extent,  though not completely since dissipation effects (of energy) due 
to heating and crystal irregularities will also contribute.    Let   F,  and F„ denote 

the deformation forces exerted across   I   by the projectile and target,   respectively, 
upon each other.    Then,   for examole,    F^ represents the magnitude of the gradient 
of the potential function of the projectile material which arises due to a compression 
(here,  assumed homogeneous) of part of the projectile.    That portion of initial 
energy of the projectile,  which will go into a deformation of the lattices of the two 
materials at any time after impact but before appreciable "melting" takes place, 
may be expected to be divided equally between   Fj   and   F2;    i. e. ,   Fj = F2. 

In order to simplify the following description,  it will be assumed that each 
of the crystal lattices considered here has cubic structure,  with the direction of 
the rows of the lattice assumed normal to the (original) face of the target.    The 
necessary modifications to other structures should be clear from the following 
treatment.    The row-direction above then coincides with that of the    s-    and   s1- 
axes in Figure 1.    Choosing any one of these rows,  assign the number 1 to the first 
molecule in that row,   the number 2 for the next,  and so on (for increasing   s,  from 
s = 0).    Considering any two distinct molecules (i) and (j)   in the same row,   let  Rj. 
denote the distance between them.    It will now be assumed that the potential 
associated with the   i1" molecule in any row may be written as 

Vj   = ^    WR:.) 1 j + i      v   V' 

where the "effective potential" VfRj.) depends only on the magnitude of the argu- 
ment   Rj.   It is thus  assumed that the potential associated with any molecule in 
the lattice may be found by considering only the effective contributions to this 
quantity arising from the other molecules in the same row;   the effects of molecules 
from other rows being assumed to be accounted for indirectly by the "effective 
potentials"   V(Ri.). 

Kittel    suggests that the potential in a crystal arising from the interaction 
of particles located at positions   r-   and   r,   within the lattice (r- =£ r.) may be 
given by 

Kittel,  Introduction to Solid State Physics. 
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V (l£i ^j !) 
I£i ^jl Hi ^1 

in this case,  the effective potentials alluded to above might take the form 

V   (Ri;) R; l^JF (i) 

where the empirical constants   A   and   B   are chosen so as to account for the con- 
tributions of other rows of molecules without the necessity of considering them 
explicitly. 

The picture of the compression of part of the target (and,   similarly,  the 
projectile) is the following.    Choosing any row of molecules of the lattice normal 
to the face of the target,  it is assumed that the energy absorbed by this row in 
the process of being compressed at any time   t^    is utilized by changing the equilib- 
rium distance   R0   between nearest neighbors in the row to some value   Rj <   R0 

for the first   N = N(ti)   of these molecule-pairs in the row;   all other distances be- 
tween succeeding molecule-pairs remaining unchanged. 

Initial Structure 

(t=0) 

Structure at t = t^ 

O O O O O O 

O      O     O      O      O O o 

Original Face of Target 

Figure 2 

It may be objected here that,   in reality no such homogeneous compression 
can occur and the change in the succeeding-neighbor distance    A R = R0 - R^   may 
be expected to be spread out or dispersed over a range,   rather than being uniformly 
distributed over this range.    Perusal of the metallurgical photos of impacted material 
in Reference 2,     pages   9   and   15,   appears to vindicate the above assumption:    These 
photos show a very close packing in the region immediately adjacent to the craters 
produced,   which packing falls off very rapidly to normal packing on moving into the 
target material and away from the crater.    The assumption of homogeneity is essen- 
tially equivalent to the assumption of a retarded potential action;   that is,  the as- 
sumption that the potential function between nearest neighbors does not change until 
the distance between them has changed by some amount     A R   greater than a thresh- 
old value.    In a sense,   this is an assumption of the quantization of potential energy 
in a lattice (this might be an interesting conjecture to investigate in its own right, 
but the time and place is not here). 

^    Maiden, Charest and Tardif,  An investigation of spalling and crater for- 
mation by hypervelocity projectiles:    4th Hypervelocity Impact Symposium,  April 
1.960,  Eglin Air Force Base,   Florida.   27g 
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In anticipation uf a second objection,  that of the resistance of motion of one 
row which is offered by adjacent rows;    it should be observed that all rows will be 
being moved in a similar manner;    so that the resulting resistance offered by this 
mechanism will be but a fraction of its value in the case where only one row under- 
goes any motion.    To be sure,  this resistance does not vanish completely except, 
perhaps,   in the special case where the projectile also presents a flat face to the 
target -- e. g. ,   a right cylindrical projectile.    Only in this case can the rows be 
expected to move in unison. 

The cumulative energy of impact available for transfer to the two crystal 
lattices at any time   t   from the "bar" of projectile material as in Figure 1 is 
taken to be the kinetic energy of the whole bar less that of the uncompressed region 
of this bar.     If      ^| ,   P^     denote the density/unit length (measured parallel   to 
the s-axis) of the projectile and target materials,   respectively,  then this energy is 

/?   (£ s
l + s'4) VQ (2) 

Only a fraction of this energy,   /    E,   is actually consumed in compressing the 
two materials,   the remainder going into heating the respective areas of the crystal 
lattices adjacent to the interface. 

At this same time   t,    then,  the respective crystal lattices have each 
absorbed an amount of energy   1/2   *7    E   (cumulatively) due to compression. 
Then according to Figure 1, 

-r^ A v Ei   (v^-v.^) 

AVT=     E.    (Vj (T) (T) 

(3) 

where 

AV    = change in compression potential function of projectile lattice 
A VT =  change in compression potential function of target lattice 

The change in potential energy associated with any row of either lattice 
may be found quite simply.    Let 

N,  = initial lineal density of molecules in projectile lattice 
No = initial lineal density cf molecules in target lattice 
R'0 = equilibrium distance between, nearest-neighbors in projectile lattice 
R"0 = equilibrium distance between nearest-neighbors in target lattice 
R'    = distance between near-neighbors in part of lattice under homogeneous 

compression in projectile 
R"l  = distance between near-neighbors in part of lattice under homogeneous 

compression in target 
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r1 = Ri' B>4 
 1    =             = const. (4) 
R0 s2   -   Sj   +   s'4 

Rl s3    '   sl 
= const. (5) 

R'o 

The numbers   1 ' r' and   1  - r"   represent the percentage of (homogeneous) com- 
pression suffered by parts of the respective lattices.    The numbers   Ni  = N-/ r' 

and   Nn =   Nn/r"   will represent the (new) lineal density in the parts of the respec- 

tive lattices under compression.    The numbers   N^x (S2  - s^ + s'A - M^t) and 

No(«3 " si) = MgW   may then be expected to be integral (or very nearly so), and 

will   represent the number of molecules in a given row of the respective lattices 
which are within the compressed area at any time   t. 

At any time   t,    the change in potential associated with the first molecule 
in some row of the lattice of the projectile material (the molecule at the interface) 

M.OH Np-M, Np , 

AVpit)-    I VCnR.)    +     X VÜM.-DR.+ nR,)-   Iv(nR0)     j 
n=l n=! n=| 

that associated with the second molecule in the row exclusive of that contributed 
by the first molecule is 

M^t)-l Np-M,-1 N     | 

AVp8(t)-     Zv(nRl)+      I   VfdVDR.+ nR,)-    I V(nR0) : «) 
""' n = i n = l 

and so on.    Then the total change in potential associated with the row here is 
Np M,-l 

AVD(t) =    ZAvp(t)=    Z mvldVmjR,) 
p n=l      Km m=l 

M,-l Np-Mrm+i Np * (8) 

+    Z    Z     v((M|-ni)R1+ nR0) -    I ■Np-ni+l)v(mR0) 
m=l   n=l rn=l 

The individual      ^^      (t) are monotone-increasing,  and they also may be 
expected to satisfy 1 

*   N    + 1 is taken to be the total number of particles in the row considered. 

For the target material,    N^»    = ee . 
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AVp.{t + 2'»')- AVp((t+r) > AVp^t+r) - AVp^t)       (i = l,2,-) 

for any   t,     T* > 0    ; since it is to be expected that the change in potential will 
increase at an increasing rate,  due in part to the ever larger coulomb repulsion 
between any two molecules as the distance between their centers decreases.    Thus 

AV(t)   may be expected to satisfy the relations 
P 

AVp(t+r)> AVp(t) 

AVp(t + 2r)- AVp(t + r) >  AVp(t + T)- AVp(t)    (t;rSO). 

Translated into physical concepts,  this indicates that the work done per unit time 
against the lattice forces in extending the compressed area of the lattice is an 
increasing function of time.    Then, since energy is being supplied to the process 
at a very nearly constant rate,   it may be expected that the rate-of-growth of the 
compressed area within the lattice of projectile material will be monotone-decreas- 
ing in time.    Analogous remarks apply to the target material. 

Thus,   although the rate-of-growth of the compressed area within the pro- 
jectile is supersonic at first -- initially,  it is   v0,  the velocity of   impact -- this 
rate may be expected to decrease to a subsonic level at some later time, allowing 
the compression shock to move out away from the interface between the compressed 
and uncompressed areas within the projectile material. 

To continue the discussion, attention must be directed toward particular 
forms of deformation potentials. The forms of the deformation potentials to be 
studied are 

Ap       Bp 
Vp(R> =   'S5- + -^ 

R     (Rr 
(projectile) (9) 

VT(R)-   ^+-H (target) (10) 

where it is assumed that      p, T   >   2       . * 

The various sums in the relation   (8) must be approximated by reasonably 
tractable expressions,  if the analysis is to proceed.    The approximation 

Z n"   ~   ln(N+8)+ r 
n = l 

(11) 

with 
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g «   e'"''   - I - .478.... , 

N 
y - Lim        IT-lnN= .577.... , 

(Euler-Mascheroni constant). 

is particularly useful,  as it has the following properties:   The sum is matched 
precisely for   N = 1   and in the limit of large N.    Thus,  this approximation may 
be expected to introduce only a small error at most (lor N =  10,  the error in (11) 
is already zero to three decimals).    The approximation 

0 
P-I (P>l), (12) ~ 

with 

and 

£(P) - I ± 
n = i 

■rP=  {(P-O^P)-!]}^'1-! 

will also be utilized.    This approximation also has the desirable property of match- 
ing the corresponding sum precisely for   N = 1   and in the limit of large N.    As an 
example,   for   p = 10   (a reasonably representative choice),   £B ='.688.    The fol- 
lowing approximations will also be used; 

N 

ntr(n+ai 
~   ln(N+8) + Y     (<a> = 0) (13) 

with 

üi^i" ~   ^-^-(N + ep)-«»""   «a>=o) 

~   ■?fr{(a + €p)-(p-,)-(N+a+€p)-<P-')} 

(<a> ^D, 

<a^    =   integer closest to a. 

(13) 

(14) 

(14) 
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The (approximate) validity of the approximations (ii) and US') is established 
in the following way.    For   a   =   M   »   an integer 5» 1,  the quantity 

N 

y -*- 
n=l 

in (13) may be rewritten as 

N-t-M 

by the approximation adopted in (11).    For   i<M<a<M+l    (M integral),  the 
approximation in (13) is then "extended" to non-integral values of   a   in the manner 
indicated in   (13').    Analogous remarks hold for the approximations (14) and (14'). 

These approximations will now be applied to the individual sums in (8). 
These sums become,  for the projectile material. 

^mv((Mrm)Rl) -    £ (M,-m)V(mRl) 
n=l m=l 

BP /  r....    {M,-i+€pr(p"l,i 

-[CP-'-^^T^""2]}, 
MH   Np-m.fl 

)Ri+nR«) =   J   j]  v{mRi + nRo) 
m=l   n=l 

Mi-I Np-Mi-m+l 

Z   £v((M.-r 
m=l  n=l 

= y y   [    AP     .      Bp     i 

^   j;1 JE. In f    Np*l-m^mr)f8\ 
m=i    R»       \ 8 ♦ mr / 

.    v'    BP '      f, ^P"0 . -ip-l)"!* +   ^  "ST- TT]" 1(mr + <P)   -(N^fl-m+n>r + €p)        j- 

(15) 
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(p-2) 

«(p-l)' 

(p-2) 

. cp r<P-2)l    J F/Np-*- 1 •<• «p c 

-{Mi-l+.(p.1) + -^ ) \l 

- J (Np-m + l) V (mR«) = -2 (Np+I ) V (m Ro)   +  £ mV(mR« 

•^{-(Np+,)[,„(Np+»)+y--^_]} 
+ iibf{-'N^)[t<p'-Tr(,Wp'" 

ii6) 

Ac 

(17) 

Addition of (15),   (16).  and (17) yields the quantity AVp(t), which is the 
(quantized) change in potential energy of one row. 

This is to be utilized in the following manner.    Assume the previous 
(quantized) change,  in potential has occurred --so that there are   Mj - i molecules 
from this row within the compressed area.    Now the energy/second being supplied 
by this row due to its impacting upon the target is    3 r   »        ^7 mi y ?f  ''0   Vwith 

n\i ** P-\e )•    Then the (quantized) change in potential which will bring 

another molecule within the compressed area (bringing the total to   Mi)   will occur 
at a time     A» c AVZ—^Eo        later than the previous event.    Theoretically,  then, 

this allows a determination of   Mj(t),  the number of molecules in the projectile 
material which are within the compressed area at any time   t.    However,  as can be 
seen from   (15),   (16),   (17),  an analytic determination of   MjW   is quite impossible; 
and one can only infer the existence of such a function from the classical implicit 
function theorem.    To continue,    My it) is a monotone increasing function of time 
which, assumes only positive integral values;   thus the quantity  a Ml has no meaning. 

dt 
However,  if   ti,  to,  1%,  ...  denote the time values at which the successive (quantized) 
changes in potential energy occur,   with the projectile material row then the quantity 
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M, (tj) 
M(ti)-M(t|-t) 

t| - ti-, (18) 

will serve quite well as the rate-of-change of Mj at the point t'^. Then the rate- 
of-growth of the compressed area within the projectile material row may be taken 
as 

M, R, .-v; (19) 

with   V   ' as in Figure 1. 

Clearly,  analogous remarks apply to the target material,  but with one im- 
portant difference:    the target material is assumed semi-infinite in extent,  so that 
NT  »   00     .    This necessitates a restatement of Equations (6),   (7),   (8),   in order 
to remove the logarithmic singularities encountered there due to the form (10) 
assumed.    The restatement of   (6),   (7),   (8) for the target material is 

AVi /T, =  2]{v{nR'1)-V(nR,o)} 
n=l 

+  £ {v((Mt-l)R.+ nR,o) - V((Ma-l+n)R'.)}, 

Mr 2 . i 
AVr2=   2,{v(nR,.)-V(nRi,)} 1 

n = l 

+   £ {v^-zm'.+nR'o)  - v((Ma-2+n)R'o)}, 

CO Mf-I 

AVT-    Y   AVT'n    = X(M2"n,{V(nR',)"V(nR'o)J 

03 

I 
n=l 

GO 

I 
n=l 

(6) 

(7) 

M.-I  03 

+ J, Z{v((M«~m)R'+ nR'B) - v{(M«-m+n)R'0)}. 
m=l  n=l (8) 

Utilizing the approximations developed above,  the two right-hand quantities 
in (8') can be written,   respectively,  as 
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Mg"' 

Z(M2-n){v(nR;)-V(nR;)}      ~ A1.MI(^;--i7){ln(Mt-l+8) + y - "jj" 

+ Br(^-T^?r){
M«[«('r)-:^T(M«-,+VtV",, 

Y    X   {v((M2-m)R; + nR^)-v((M2-m + n)R^)} 

(20) 

in=l   " = 1 

~  Ar |(M2+ 8-l[ln(M2+8-l)- l] - {l + 8)[ln(l+8)-l] 

-( Ma + -§r - l)[ln(M2+-fr - l] + (I + TT) [ln(l +-^) - l] 

+ {M.-I) ln(- r   J (R^r (r-l)(r-2)   I (r') r   'l^'   +€r-,' 

(21) 

((M!-1.+>+.T.,^IT-,']-[^+...,.■,T-^, 

-((M2-|)+€v+€ r    ST- .r-21]} 

The treatment accorded the target material above has tacitly assumed that 
there are precisely as many "rows" of molecules in the projectile material as 
there are "rows" in the target material with which it makes contact.    This assump- 
tion requires a high degree of similarity between the two lattice structures,  and is 
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seldom attainable,  except where the target and projectile materials are the same. * 
Perhaps the most reasonable and simple method of extending the procedure to 
situations where   M   rows of molecules of the projectile material lattice "coincide" 
with   N   rows of molecules of the target material lattice is to multiply the effective 
deformation potential of the target material by the factor   M/N. 

Attention has thus far been confined to a single "row" of molecules within 
either lattice.    There remains to be considered the effect of the shape of the (frontal 
part of the) projectile shape.    Consider the shape configuration exhibited in Figure 3: 

■C 

PrajiKM« Taf««t Proitcfil« 

P 
a) Before impact b) During impact 

Figure 3 

In Figure 3b,  curves 1 and 4 represent the lines of demarcation between the normal 
and compressed areas in the projectile and target materials,   respectively;    curve 2 
the (new) interface between the two materials;   and curve 3   the location of the inter- 
face if the projectile were to suffer no deformation (i. e. ,  the original projectile "face"). 

Assume,  now that the functions   Mi(t)   and   M2(t)   are known for each row of 
both the material lattices. ** Assume a consecutive indexing of the rows of the respec- 
tive lattices -- denoted by (i) and (j) respectively -- with   i = 0 (j = 0) corresponding 
to the central row of the projectile lattice (target lattice);    i >0 (j > 0) corresponding 
to the rows lying above this row in Figure 3a;    and   i < 0 (j •< 0) corresponding to 
those rows 'ying below this row in the figure.    Thus   x^ denotes the x-coordinate of 
the row in the projectile lattice lying immediately above the "central row", with 
x-coordinate   x0 = 0,  and so on.    Considering the   i*    row of the projectile lattice, 
there is a time lag of 

(At)i   -   f (xi)Vo, 
(22) 

in the impact of this row with sotne row or rows of the target lattice,  relative to 
the time of impact of the "central row" in each lattice.    Suppose,  now, that all the 
row functions   (Mj(t))j   and   (M2(t))j    have their time origins changed so that they 
coincide with the time origin of the central row function   (Mj (t))^,.    Then,  letting 

* Lattice defect effects are ignored here, since the problem is complicated 
enough without their introduction, and since it appears to be a debatable matter as 
to their quantitative significance here. 

** It is assumed here that the origin of time (t * 0) for each row function is 
taken at the point in time at which that row makes "contact" with a corresponding 
one in the other lattice. 
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güc.t),    g (x,t), and   g-,   (x, t) denote the "amplitudes" (measured parallel to the 
s-axis and relative to   s = 0 in Fig.   1) of the curves (2),   (1), and (4),  respectively, 
in Figure 3b.    Then it is easily verified that 

gUi.t)    -   (Ri-R'iHMsCt-Ait))! , 

gp(Ki.t) - gUi.t) - fUM.o-Aitni, 

g-rUj.t)    -    gUj.t) + R'.(M«(t-Ajt))j. 

For ease of visualization of these relations,   Figure 4 is provided (see Figure 3) 

(23) 

s = o 

Figure 4 

These relations enable one to determine the physical extent of the various regions 
of interest at any time   l.    This brings to a close the treatment of the first regime. 

Second Time Regime 

In order to continue the discussion,  a specific shape must be chosai for 
the projectile,  in order that the interaction of the advancing and reflected waves 
may be studied.    For purposes of illustration,  a right cylinder,  of height   h   and 
radius   a   with axis parallel to the initial projectile velocity vector   V0 will be 
chosen;   though the extension to a more complicated structure (such as a sphere 
or a cone) will presumably be clear. 

The following (Cartesian) coordinate system will be used.    The x-*axis will 
be assumed to coincide with the axis of the cylinder,  with positive orientation in 
the opposite direction to that of the vector   yo.    The   y- and z-coordinate axes are 
chosen perpendicular to the x-axis (and to each other) in any consistent manner. 
The plane ^x = Or ^s assumed to coincide with the undisturbed-homogeneously 
compressed interface within the projectile at the moment at which the speed of 
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this advancing front becomes subsonic.    The time coordinate   t1   is measured 
from this time point as origin (i. e. ,  for   t' = 0).    Only the dilatational or longi- 
tudinal disturbance waves will be of interest here;    the effect of the transverse 
or distortional waves are not believed to contribute significantly to the   'fracturing. 

Figure 5 

Now,   it has been tacitly assumed in the preceding that both materials are 
at OK initially.    The more general situation of non-zero temperature "bath" may 
be expected to introduce certain changes in the deformation potentials (9) and (10). 
The most obvious one -- and the one which will be treated here in some detail --is 
that of the change of mean inverse distance between two particles due to their vibra- 
tions around the respective equilibrium positions. 

Let the distance between the equilibrium positions of two particles be   R, 
and suppose the time behavior of each in the direction parallel to their line-of- 
centers is • _ 

x,     »    fi+(AR)coswt (•^-<-!r), _l_ 
2 

X2    =   (AR) cos(wt+8) (8 some phase shift) 

The mean value of the quantity ( x    _ K-)"
1 will then be taken to be 

'o      xi-xa R     • 

Evaluation of the inner integral yields 

(24) 

2-ir diwt) 
0 X| — X2 

{-«"■'[4?f.on cf,]}!;;; 
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b   -   -^5i|sin(|-)| (0 <  8 < ZTT) 

Continuing,  there obtains from (24) 

a    =      2    r/ 2(ARK ^     I 
R      ~   TTR      ^      ft     ; ft    ' (25) 

where 

F(k) - / /2 -,__.  
Vl-^Sin2«!' (26) 

is the complete elliptic integral function of the first kind. The mean inverse distance 
between two particles which are undergoing vibration is thus greater than the equilib- 
rium inverse distance by a factor 

.2.      .2(AR)     ^ AR   2 
TT M     R      )-!+(-) (27) 

for (    _   f < < I .In the situations generally encountered,  a reasonable 
R 

guess would be 'R  *   ^5    Sü t^at '^ approximation in (27) should be good 
to within two parts in a thousand. 

A similar analysis may be made upon the quantity '       2'        'n ^ I)  , 
though things are considerably more complicated.    However,  if it is assumed that, 
say, AR^R  <   in •   then the approximation 

(R)      <x.-^nlAvg.    ^A~?K~T-n (28) 

may be used within an error of at most about 1 percent.    This approximation also 
has the desirable property that the quantity 

S.  s 2 r, 2(ARK 
R R7rF(     R      ' (29) 

then becomes the new equilibrium distance. * 

Now the quantity   F(k) defined in (26) is a strictly increasing function of   k, 
and this will affect the quantities   R0   and   Rj    (and,   similarly,    R'Q   and   R'j) 
introduced in Figure 2 in the following manner.    The quantity   R0   will be increased 
by the factor        2 -..^ARp. ,  while the quantity   R^   will be increased by the 

7rF<2R„ 2.F(2ARl)> 2.F(2AR.0) 
factor TT1^   R,   ' ^ TT1^   R0 ' 
The percentage increase in "packing" distance within the compressed region of 
the projectile (and ulso target) material will thus be considerably greater than the 
corresponding percentage increase in the "undisturbed" region of the material. 

Now in the concept of melting of a material (third regime) adopted here, 
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an increase of the equilibrium distance may be taken to be equivalent to lowering 
the melting temperature of the substance.    It is assumed,  inter alia, that as the 
so-called melting temperature of a substance is approached,  the corresponding 
lattice deformation potential becomes "softer" -- less resistant to further deforma- 
tion.    Thus,  if the initial temperature of the target material is raised,  the projectile 
material temperature remaining the same,  the target material deforms more easily 
than before and is also closer to the i.idling temperature of the substance.    Both 
effects may be expected to increase the penetration of the target by the projectile. 
If,  however,  the situation is reversed and the initial temperature of the projectile 
is raised,   the effect is not quite what would be expected (at least at first glance). 
The kinetic energy being converted to deform both objects is still the same;   so 
that although the projectile will deform more easily than before,  the deformation 
of the target will apparently remain unchanged (assuming the empirical factor in 
(3) is unaffected).    However,  the local temperature of the lattice of the projectile 
material is now closer to that required for melting than before,   so that the "flow" 
of projectile material described in regime 4 will begin sooner and take place more 
readily.    However,   this will have only a small effect on the cratering of the target 
produced outside the "shadow" of the projectile on the target -- due to the "boundary 
layer" assumption in regime 4.    The effect will be to increase the cratering slightly. 
Thus raising the initial temperature of the projectile material may be expected to 
have at best only a second-order effect on penetration,  as compared to the first- 
order effect produced by increasing the initial temperature of the targei material. 
The increase of initial projectile temperature can be expected to have no effect on 
the depth-of-penetration within the target at the center portion of the crater. 

Now let   u,   v,  w   be the displacements from equilibrium of any element of 
the projectile in the region    x ^0,   measured along the   x-,  y-,  and z-axes respec- 
tively.    The displacement "waves" may be expected to move with radial symmetry 
in a plane,   parallel to the plane     < x=0f   .   so that the only variation of   u,   v,   w 
with position to be expected is that of the x-dependency:    i. e. , 

u = u(x,t'), 

v = v(x,t') = w = w(x,t') 

Thus,  in the so-called dilation factor 

A ■  — + — | dw 
dx      dy      dz 

the last two of the three terms are zero;    and the defining relation for   u(x,  t) in 
the absence of viscous forces becomes 

d* d2u 
PJF*~ '^^t?   . (30) 

*   That is,  the distance for which the static potential of the lattice remains 
unchanged   (preceding page). 

3 The notation and defining equations here are taken from H.   Kolsky;   Stress 
Waves in Solids;   Oxford Press (1953);    pp.  4-15.   
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where P is the density of the medium and X and  ^ are the well-known Lame 
constants (both positive).    In the situation here,  viscous dissipation will be ad- 
mitted,   so that the defining equation for   u   in the model adopted becomes 

d2u     .      i dv # v . «   4  3
2u 

f'dF "a?"   "   ^+2M)-ä^-      > (30') 

where V   > Qis an empirical parameter representing the magnitude of viscous 
dissipation forces. 

A velocity   c =      L Sp^ IS associated with the disturb- 
ance wave(s) represented by the variation of   u,  and it is required that the solution 
u(x, t1) of (30') satisfy 

1) u(x, t') = 0   for x - ct1 > 0 
2) u   is continuous everywhere and differentiable a sufficient number of 

times everywhere except perhaps on the cone   x - ct' = 0. 
3) u   has a finite discontinuity on this cone. 

In Appendix A,   it is shown that one such solution 

u(x,t') -   u0u(ct-x)e      c e c , (3^ 

where ir{s) = 0 s <  0 

=   1 S >  0 

v' 
P      . 

u     is the maximum displacement associated with this wave,   and   k   is (another) 
empirical parameter introduced in the solution of (30'). 

Along the cone   x - ct' = 0 (which coincides with the advancing "front" of 
the disturbance),  the envelope of the variation of   u   decays as 

exp[-(k±yk^|P +-£)x]-s-   exp[-dx] 
Referring to Figures 1 and 5,   let 

L  =   \   -(sa-s,) + si . 
Vo * (32) 

L then represents the distance from the interface of the compressed and "undisturbed" 
regions within the projectile to the rear end of the projectile at any time.    Let   Ls 

denote the distance   L   at that time at which the magnitude of the velocity of this 
interface (relative to the rear of the projectile) has just become subsonic.    It may 
then be expected that the first disturbance wave will have decayed in amplitude by 
a factor exp      j .     I       when it has reached the rear of the projectile.    Since 
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the normal of the advancing frunt of the first and all succeeding disturbance waves 
will be normal to the rear end of the projectile,   it may be shown that 4 these waves 
will be reflected there with no change in direction,   speed,  or amplitude,  but with a 
phase change of TT  (radians),   so that the compression waves reflect as tension 
waves. 

Just as the (fiTsi/ disturbance wave produced here is regarded as having 
been initiated by the growth of the compressed area within the projectile (at the 
moment that the relative velocity of the interface becomes subsonic),   so each suc- 
ceeding "growth" of this compressed region * may be expected to produce further 
disturbance waves.    It is now necessary to stipulate what effect the relative rate of 
advance of the interface,    M1 R0 (seed 8)) has upon the maximum displacement   u0 

(see (31)) associated with the disturbance wave in question.    Since the equation of 
motion (30') is linear in   u,    in the absence of boundary conditions other than those 
imposed at   x = 0   and at   x = 0»  ,  the principal of superposition of solutions applies. 
If it is assumed that the quantity   u     is proportional to some power of the quantity 
M1 Ro,   say 

u0 =  ACM.RJ' 

then apparently the remarks above require that   n =  1,   so that   U0    OO M|RC 

(33) 

Let   t =  ts denoie the time,   measured from first impart,   at which the rate 
of advance of the interface within the projectile,    Mi Ko,  becomes subsonic (corres- 
ponding to   t' = 0).    Thus the two measures of time elapsed are connected by the 
relation 

t = t' + tc (34) 

Let  ts   = t0 < t^ < t 2 <, . . •   denote the elapsed time at which consecutive particles 
in any row in the projectile lattice are transferred from the "undisturbed" region 
to the compressed region.       It was observed before that the chain of relations 

M^to) >   M^t,) > M^tg) >   .. . 

is to be expected from the ever-increasing incremental deformation potential to be 
overcome  within the projectile lattice.    It is therefore to be expected that     • 

Uo^U   >     U0(t|)   >    U0(t2) > (35) 

so that the maximum displacements associated with the disturbance waves following 
the first,   decrease steadily. 

4 See Kolsky,   ibid. .   pp.   24-31. 

!?   With reference to Figure 1,  these "growths" involve merely the transfer 
of consecutive molecules with the infinitesimal bar of material from the "undisturbed" 
to the compressed region. 
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Now the second disturbance wave and the reflection of the first disturbance 
wave will "meet" at a distance   1/2 cUj - t0) from the rear of the projectile (and 
within it).    Assuming (albeii naively) that these two waves "meet" at a location 
where one of the particles which makes up this row of particles within the lattice, 
the total displacement arising from this coalescence is 

u^ulexp^Ck + ^-JcCt.-t,)-   od^Ls-^-c^-t.,})] 

+ exp[- «^(L. + YcCt.-t,))]} 

+ UoÜ,) exp[- oo(L,-jcCt.-to)-R0]} 

It will be assumed here that the quantity        exp[-{k +-g") C (t, - t0)J   is   < < I  , 
so that only the second and third terms in (36) need be considered.    This amounts 
to ignoring the (residual) effect of the first passage by the wave through the pro- 
jectile,  in comparison with the effect of the "first" and "second" waves due to their 
current passage past the point.    From the remarks above,   since   t^ - t0< t2 - t^ 
< to - t 9 <    .....   it must be true that 

exp[-(k + f)c(ti-tj)]  < < I (i>0, j >   I +1). 

Thus the (resultant) total displacement above becomes 

"o^o) exp["   «■'(L8+^C(t|- t0))] 

+ u<)(tl) exp[- oo(Ls-Y 0(1,-0-R0] 

•a-   I,(u) 

More generally,   it then becomes apparent that only the quantities 

Zn(u)= u^V,) exp[-ood-s+^cUn-tn.^-tn-DRo] 

+ u0(tn)   exp[- «.(L.-^cUn-tn-.J-nRo] 

(36) 

(36') 

will figure in the interaction of reflections from the rear which might result in 
rupture.    If this first quantity is greater than some threshold value,   say 

£>)> uT (37) 

then it is assumed that a rupture will take place within the projectile at this point 
(in the cylindrical model adopted here,   this rupture must occur in an entire plane 
parallel to the rear surface of the projectile).    If rupture occurs at this point,  it 
is assumed here that the net effect is to decrease the total energy available from 
the impacting projectile by an amount 
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^m.v' {l--^-clt.-to^e (0<C<l) (38) 

that is,   by an amount uf energy proportional to that contained in the section of the 
projectile which is "split off" by the rupture.    The quantity  ^ here is another 
empirical constant,  to be.   determined experimentally. 

By assumption,   only the quantities    Z^n'
u'    in (36') may (possibly) figure 

in any rupture at the rear of the projectile.    But since it is true that 

I.tu) >  I2(u)> 
irly if the rupture does net occur by the interaction of the first and second waves 
■ill not, occur by the interaction of the   nÜl   and (n + 1)— waves.    The analysis is 

clea 
it will not occur by 
thus considerably simplified. 

Assume this (rupture) does occur.    First,   the rupture will have a certain 
time lag    TI_      associated with it,   su that the event will not yccur simultaneously 
with the meeting of the wave fronts of the two waves discussed above.    This will 
have the following effect.    If 

then the wave front of the third longitudinal wave (generated at   t = t2)   will arrive 
before the rupture occurs and will pass into the material constituting the rear piece 
of the resulting bisected projectile      In this event,  the possible effect of the reflec- 
tion of this wave is assumed to be lost,  though the residual displacement resulting 
from its passage through the projectile once,   remains.    This will also be true of 
the fourth wave,   if 

rL   >    tj-t, 

and so on.    At some point,  however,   it must be true that 

^th 
\<    »« - t, 

(this could be true,   for example,   for   n •   2).    It is then assumed that the ( n + 1)— 
wave now "sees" the plane in which rupture occurs as th., new "--ear of projectile" 
and that subsequent reflections take place in this plane.    Thus the quantity 
Ls s- c(t|- t0) replaces the quantity   Ls   in the above,  and the analysis 
proceeas as before. 

Conclusions (II) 

A number of conclusions and/or predictions follow from the preceding 
analysis.    The first concerns the effect of initial impact velocity,    v0.    As   v0 is 
increased without limit,  a saturation point must be approached (and exceeded) 
where a further increase in   v     actually results in a smaller  effect on the resulting 
crater than did the lower velocity -- e. g. ,  the volume of the resulting crater may 
decrease.    This arises,  inter alia,  because of the (assumed) linear dependence on 
penetration velocity of the maximum displacements associated with the dilation 
waves.    The higher   v0   is,  the larger the penetration of the compressed region 
at the time the velocity of the interface becomes subsonic;   the larger this 
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penetration,  the smaller the distance   Ls   from the interface to the rear of the 
projectile (given that the original projectile length remains unchanged);   the smaller 
L„,    the greater the resulting interaction between outgoing and reflected waves,  and 
the greater the likelihood of rupture or even multiple rupture.    Indeed,   if the quan- 
tity   Ls   defined above may be written as   Ls(v0)   for constant   h -- where   dLs 

dv       < 0 
--,  then one measure of the likelihood of rupture may be taken to be  exp " 
f - 01 Lg(v0)J    :    if this quantity is greater than,   say.  some quantity   xn (where 
xi   <  X2 <   ...   <. xn ^ . . . )   then   n   separate ruptures may be expected to occur, 
with a corresponding reduction in penetration. 

From the remarks above,  it is also clear that the effect of increasing the 
length of the original cylinder (and,   presumably other shapes as well) is to "post- 
pone" the attainment of the saturation point defined above.    This should result in 
an increase of cratering over and above that to be expected from the naive extrapo- 
lation of cratering due to the extra energy available. 

A third prediction concerns the sonic velocity of the projectile material, 
c.    Starting from   c   very small,   as   c   is increased the deceleration of velocity 
of the interface to   c   will be accomplished in less and less time,   with a resulting 
increase in the distance   Ls = Ls(c). *   Thus an increase in   c   may be expected to 
increase the likelihood of rupture,   all other things remaining the same. 

i iiira rtegime 

The treatment of the third regime necessarily begins with the determination 
of the temperature distribution within the two media.    Since the interval over which 
the action takes place is so small,    apparently radiation from the boundaries of the 
bodies to the surrounding atmosphere may be neglected.    Before melting,  the con- 
figuration of Figure 1 is envisaged.    In that figure,   let   x   replace the coordinate 
s'   there (with origin at the projectile-target interface)   and let   r   be the usual 
radial coordinate,   measured from the cylinder axis outward.    Let the homogeneously 
compressed regions within the projectile and target materials be denoted by I and II, 
respectively.      Let the undisturbed regions of the respective materials be denoted 
by III and IV. 

It will also be assumed that the T.ransfer of heat from   I   and II   to III   and 
IV   is also negligible,  as well as that between   III   and IV   (this last assumption 
accounts for situations v/here the initial temperatures of projectile and target, 
Tp     and   T_,     ,  are not equal).    It will be recalled that one assumption made in 

^o '    o 
the treatment of time regime I was that,  of the total (kinetic) energy made available 
per unit time by the impacting projectile 

I 2 
-Z- ID V0 (f")   =    E,   , (39) 

*   It is (albeit,  naively) assumed that an increase in   c   is not accompanied 
by any change in the physical characteristics of the projectile material which deter 
mine the deformation potential in (9). 
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I -Target Face 

1 m m 

I 
Figure 6 

a certain fraction   1  - "^ is consumed in heating the two lattices (locally).    It will 
now be assumed that this (equivalent heat delivered per unit time makes its initial 
appearance at the   I-II   interface of Figure 6 ,  and then diffuses into the regions   I 
and   II   according to the relations 

Lim _ To    = 
x-» o     v Lim „♦TT 

(40) 

Lim 
x—» o 

ajp 
d(-x) 

=    Lim k    dir 
o+     d* 

(41) 

where K- and K_ are the respective thermal conductivity parameters. It is 
thus to be expected that the heat flux into (the interior of) each of the regions I 
and   II   from their common interface will be the same. 

Now the regions   I   and   II   are of length   MjUJRi   and   M2(t)Ri'   in the 
x-direction,   respectively,  and so are growing   (in x-extent) in time monotpnically. 
From the usual dimensional analysis of the heat equation,  it may be inferred that 
the heat put into the system at the interface   (z = 0)   may be expected to diffuse 
through either region   1   or   II   (roughly) according to the relation 

,2 

Kt 
= const,  or   x  Ct ± 

(42) 

-1 cm"   -deg C) Now the magnitude oi   K   for the metals of interest   (in calory - sec 
is of the order of one (1) or lesl,  while the   (longitudinal) velocity of sound --   c 
Equation (31) --is between 12, 000 and 50, 000 cm-sec"    for the same group of 
materials.*   The quantities   M^(t)Ri   and   iC^WRi'   may be expected to be of the 
order of magnitude of   c    (or bettei) during impact.    Now the average velocity of 
diffusion,  as given by (42),  over some interval of time At   is 

*   Chem.-Phys.   Handbook,  pp.   2247-2249 and pp.   2311-2312,  resp. 
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vo-lkPf -  St -7* *     m    v  A*     '"   ~7A! 
(43) 

v^r tf■x,/4Kp, 

The time At   required for a sound wave to traverse a length   &\   within the material 
is 

At =  4i C       . (44) 

and the average velocity of diffusion of heat during this interval is » 

for lengths       Al      "f reasonable size (1mm to a few meters).    Thus the velocities 
of growth of the compressed regions   I   and   II   are roughly the square of the veloc- 
ities of diffusion of heat in the respective materials,  so that the amount of heat 
reaching the   I-III  and   II-IV   interfaces,  as well as regions   III  and   IV   is a neg- 
ligible fraction of the total heat being generated.    Thus the lattice heating may be 
expected to have almost no effect upon the deformation processes;   and, in addition, 
the heat generated may be assumed confined to the regions   I  and   II. 

The temperature distribution in regions   I  and   II   are assumed to be given 
fey 

TP " TPo =  ^[f0%^Z\rH'e-^^ dx} 
(45) 

J^_L        /T     e-(X2/4KTt) 

-M'R' (46) 

Here, k   is the Boltzmann constant, and the parameter   n   (possibly empirical) 
accounts for the number of degrees of freedom of the molecules in the two lattices 
which are affected significantly by the rise in temperature -- for molecules in 
which only the translational degrees partake of the excitation,  of course,    n » 3. 

These two distributions have two desirable characteristics which should 
serve to recommend them.    First,  the ''static" components 
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and 
V TTt 

• *V4Krt 

satisfy the respective homogeneous heat equations.    Second,  the total heat produced 
in regions   I   and   II   at any time   t   is proportional to 

/      (Tp-Tpjdx 
-M.Ri 

/.Ma»', 
/      (TT-TT-, )dx Eot 

■j-nk 

in agreement with what would be expected. 

Two qualitative remarks can be made concerning the distributions (45) and 
(46).    If the quantity   M.R,    increases faster than the quantity   MgRi ' (given that 
K_   and   K-j.  are about equal),  then more heat (produced at the interface) must 
flow into region   II   than region   I,  and inversely.    Also,  if the quantities   M^R ^ 
and U2KX' are about equal, then if   K_  is greater than   K-j»   more heat must 
flow info region   I   than region   II, and inversely.    Thus, all other things being 
roughly equal,   between any materials comprising the two lattices,  the one which 
deforms most easily and has the higher thermal conductivity parameter may be 
expected to tend to its melting temperature more quickly.    The resistance to de- 
formation may be expected to increase with increasing lineal (number) density,   while 
the thermal conductivity parameter is more or less independent of this quantity (at 
least in an elementary treatment).    Thus the approach to melting temperature (on 
a relative,   not an absolute,  basis) must be more rapid,  the smaller the lineal 
density of the host material. 

Some of the remarks in the preceding paragraph may be given a more 
satisfying (quantitative) foundation.    Let 
tures at which melting begins in the 
Observe first that (45) and (46) may 

and   T^ denote the tempera- 
m,    respective materials, 

be written as 

Tp-Tpo = Ame-^V, (45') 

TT-T^   =   A(t)tf'X/4Kf *, 
(46') 

ln(Tp- Tpo) - lnA{t) » 
4Koi (45") 

MTT-TTo) -lnA{t) = 
4Krt 

(46") 
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If  x     and   x   denote points in the respective materials at which melting has just 
begun at some time   t   0,  then 

L Tw   ~ Tj, J K^. Kp 
(47) 

so that the ratio 

$>   = 

TPrn,    TP. 

T'        0 (48) 

is seen to be the crucial parameter in determining whether the target or the pro- 
jectile begins to melt first,  and in determining the relative rates at which melting 
"proceeds" through the respective materials.    If,   for example,   <& < I,   so that the 
projectile begins to melt first,   write (48) as 

(-^r = (-^r + 4, ,„* 
(49) 

If in addition   K^, > Kp     ,  then at some time 

'" K^ 
t   oe 

4K~, In*       ' (50) vr 

X^,     must equal  xD .   and from there on the thickness of the melted target material 
must exceed and grow faster than the thickness of the melted projectile material; 
while if        K-Y« — Kp ,  then   Xp   must always exceed   X^       (except at  t = 0,  at which 
point both are zero).    This may be seen by setting        x-, = Xp in (49) and rewriting 
it as 

X*(|--|^r)=  4KTt   ln<I><0      (t>0) 
Kp 

Clearly,  analogous remarks hold for the situation <P >  I   ;   but for I* =   ' ,  then 
the thicknesses of the respective melted materials are similar for all time and 
correspond to the relation 

7^'  '"'7*7   • 
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The process of melting of either material is assumed to be accomplished 
in the usual manner.    After the local temperature of the material is raised to the 
lower melting temperature     •m   .  --at which point the usual concept of order in 
the material still prevails -- the material spontaneously "absorbs" (locally) an 
additional amount of heat  &Tm    and also passes to a state of predominant disorder 
(completely melted) at some upper temperature Tm   >   T^       .    The difference 

between Aim      and      Tm  - Tm    is interpreted as the heat of fusion   h« of the 

material.    At this point,  the specific volume   V  of the material has also increased 
by a factor     ß > \   {i. e. ,    V -"   /3 V).    It is then assumed that the material in the 
melted state   (T       Tm  )   is incompressible,    so that   ß\f   is essentially constant. 

After melting,   it is assumed that the temperature is relatively unchanging except 
for heat transfer effects;   these effects will be small until the expulsion of the 
melted material from the front of the material begins,  at which point the heat trans- 
fer to the unmelted target and projectile material encountered may be quite large. 

, 

After the initial melting of the target and projectile material adjacent to 
the interface,   it is assumed that the respective materials do not intermingle,  and 
that neither do the adjacent, layers within either material. 

Conclusions (III) 

The conclusions to be drawn from the treatment of the third regime are 
the following.    If any change is made in the factor 

*   = 
TPm,"Tp'' 
Tr   -Xw 

say <l) —    q, $ with        q, < I (q,>l),       then the projectile (target) 
material must begin to melt earlier than before by an amount given by the relation 

2 2 
r \        xr       xp 

4t(ln<D + Ina) =    1<7'   Kp 

where   X   and   X   denote the x-coordinatcG of the planes of material in the respective 
bodies which have just reached the melting temperature.    Second,  if the ration 
•^P/K     =  *■   is changed,  say X   -»   q,' X . then the asymptotic (and, 
perhaps,  also the initial) behavior of the quantity      Xp      is changed by 

• "x 

Fourth Regime 

This regime overlaps the third regime,  since clearly the melting and 
expulsion processes will be proceeding simultaneously.    The following mechanism 
will be assumed.    The intense pressures generated at the projectile-target inter- 
face will support only a certain small thickness (normal to the interface) A   D     of 

^o 
melted projectile maierial and a certain small thickness    ^ . of melted target 

material.    All thicknesses of the respective materials in excess of these threshold 
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values must be expelled radially outward.    It is assumed that the material at the 
interface (being the hottest) will always be expelled,  new (adjacent) material moving 
in instantaneously to take its place.    Letting^p and ^^enote the rates-of-growth 
(neglecting expulsion) of the respective thicknesses of melted materials.    Both 
quantities are positive.    For^ p     >    A p   (neglecting expulsion here),  the rate-of- 
production of melted projectile material over and above that which can be supported 
at the interface is given by 

The quantity 
( A P ^   Po*' 

represents the analogous rate for the target material.    Thus the flux unit length 
(and per unit time) of melted projectile and target materials across the outer boundary 
of the cylinder and/or its projected "shadow" on the target are,  respectively, 

1/2 a ( >Ap0 
and 

1/2 a Ar <Af > Ar > 

The situation envisioned is exhibited in Figures 7 and 8. 

2o 

Fluid 
Zones 

Figure   7 
It is assumed that the thickness     80     (normal to the vector velocity of» 

flow of the melted material) in Figure 8 for a given element of "fluid" is constant. 
This is supported by the following reasoning.    The melted material is not free to 
expand at constant temperature --in the way a gas might,  by diffusion;   and so, 
if kept at roughly constant temperature during the flow,  an initial thickness would 
not change by this mechanism.    It is not assumed,  however,  that this thickness 
is invariant from one element of fluid to another.    In fact,  it is assumed that the 
thickness    8,(0   of some element which is crossing the boundary defined by the 
circle      r = a   in Figure 7 at some time   t   is just proportional to the total rate 
of production of melted material at that time. 

80(t)= A'(Ap + Ar). (52) 
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Now the element of fluid of thickness 80(t)   is composed of two layers:   the upper 
one (in Figs.  7 and 8) of projectile material, and the lower one of target material. 
Letting    8p (t) and    8.» (t) denote the respective thicknesses of these two com- 
ponents -- subject to iht? requirement 8p0(t) +   8»v vt) Ä   80(t) ., a natural 
assumption here is that the quantities  8p0       and      by  behave just as    8«   does; 
i. e. ,  that the thicknesses of the respective sublayers of a given element does noi. 
change as the fluid flows along.    This assumption will also be adopted here. 

Now the total flux/unit length of material across the boundary      r = a 
was shown to be 

F(t)--|(Ap+Ar) 

But then the velocity V , at which flow across said boundary must proceed -- 
related to the two quantities above by the relation      F(t) s V80(t)     " is seen to 
be constant;   and is determined as soon as the quantities   p"(l)and    80(t)    are 
known at,  say. the first time point at which    An   2   ^o     an^ A/w > A~   .    Let 

v = y.   ■-     const,  here.    The quantities   A   (in (52)) and   V|   must be regarded as 
empirical parameters here;    but knowing one,  the other is immediately determined. 
This result,  that the velocity   v   above is constant for all elements of fluid,  may be 
expected to make the problem of the determination of the shape of the crater for 
r > a    in Figure 3 (given by the quantity      J(r)     there) considerably more tractable. 

The cratering for  r > a in Figures 7 and 8 is assumed to be due to a friction- 
like process taking place between the melted material in motion and the static,  solid 
target material surrounding the cylinder and its "shadow" on the target in Figure 7. 
It is assumed at the start that this "tearing away" of part of the static target ma- 
terial is accomplished by (only) a layer of fluid of very small thickness adjacent 
to the static material.    This thin layer is pictured as being rather analogous to the 
boundary layer developed in flow of a gas around a solid;   the essential difference 
being that the fluid here, being of roughly the same density as the solid material 
and of very high temperature,  is capable of melting and wearing away the solid 
(whereas the corresponding effect of a gas on a solid is relatively infinitesimal). 
It follows that the process of wearing away the solid material is independent of the 
thickness     80(t)    of rraterial flowing over the solid,   given that     g  (|)   is greater 
than some small threshold value. 

Consider,   now,  the action of a given element of fluid on the solid material. 
This element appears at the boundary   ^r = aj   with a velocity V ■ Vj  ,just as the 
preceding elements have.    Thus its effect on the first element of solid material 
which it encounters (assumedly at a distance infinitesimally greater than   a   from 
the radial origin) must be the same as the preceding ones, given that the "angle 
of impact" (here assumed zero as in Fig.   8) is the same.    It may then be inferred 
that the effect of this element of fluid (or,  more correctly,  fluid and semi-melted 
solid) on succeeding elements of solid must also follow that of the preceding ele- 
ments of fluid;   so that the (partially-formed) crater shape at any time must be 
similar (in the mathematical sense) to that at any other time.    This rather sur- 
prising result will allow a determination of the crater shape. 

The quantity f(r) exhibited graphically in Figure 8 might better bef (r;Xj), 
with "i as in Figure 8, since the initial value of the function (at r = a) is given by 

'\r = Q 
I 
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Flu« 

Figure 8 

The requirement of mathematical similarity on the quantity     (r;Xj)   inferred 
above may be written as 

nr;*h)  =    f(r;xl2) +  (xI(-x^) 

over the r-range for which both are defined (in each case, this range will depend 
strongly on the associated "j value). Thus, letting a < r £ ^(Xj) * denote 
strongly the r-range over which    f (rjXj) is defined,   j{f . % )    may evidently be 
written as 

/(r^j)   -    /(r) +  xx     (a ^rSFCxj)) 
(53) 

for some suitable function /{r ) .    Thus the particular value of    Xi   need play no 
role in the determination of crater shape,  and only the quantity   f(r) need be analyzed. 

Now the important quantities in determining the effect of the fluid flow upon 
the solid material are evidently /'(r) and   fir)''    the fluid immediately adiacent to 
some solid element at a distance   r = R       a   from the radial origin is assumed to 
be flowing in a direction parallel to the tangent of the fluid-solid interface curve 
(Fig.   8) at   r = R.    The magnitude of this slope is   (-)   f (R) ,' and the rate-of-change 
of this slope is    j"(R) ;    and it is this change of slope which is assumed to be re- 
sponsible for the predominant part friction-like process alluded to above. 

Now it must be clear at once that the solid material at the interface defined 
by the quantity    *(f)    in Figure 8 is much more resistant to deformation than is the 
fluid flowing over it.    Thus if the quantity f (r)     is taken as a measure of the force 
with which the "wearing away" process is being continued,  then since the fluid flow 
will try to accommodate itself to the shape of the crater already in existence at its 

*   For 
is the value of 

r(x1) is the smallest value of   r   for which   f{r)sO J       that is,  it 
r   for which the crater depth goes to zero. 
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passage,  it is reasonable to expect the force alluded to above to be constant, (or 
nearly so),  so that 

fir) = -2c.  = const.       (oSr<r(xT)) 
(54) 

But from (53) this then requires that 

fU-.Xj) = xj-c^r-o)*       (a^r £r(x2)). (55) 

and it follows that 

r(xT) =   o + y_ii 

n   {r S a} 

(56) 

must be parabolic.    The Thus the shape of the crater outside the regio 
quantity    C,    may be taken us an empirical parameter,  or it may be inferred from 
other empirical parameters by matching the initial ffux energy   (oe v*)    with the 

energy required to begin wearing away the solid target material adjacent to the point 
where expulsion begins. 

After the extruded material has flowed up the sides of the crater,  it will 
apparently separate from the target completely,  spewing off into the surrounding 
atmosphere.    However,  the last portion of the projectile to undergo melting will 
not be extruded (there being mo material behind it to force it radially outward), 
and so will solidify (on cooling) at the center of the crater.    A certain amount of 
previously melted material may be expected to solidify over the remainder of the 
crater as well,  this amount being proportional to the thickness   80(t)    of that 
(total) element of material when extrudedffrom the region between the (non-melted) 
projectile and target.    Now  80(t)   is proportional to     Äp + Ä-^see (52)) and this 
may be expected to be very nearly constant (but decreasing slightly in time) over 
the last stages of melting.    Thus it would be expected that a thin and nearly constant 
layer of previously melted material would be deposited over the sides of the crater, 
away from the center.    A more careful measurement of this thickness would be 
expected to show that it increases slightly as one proceeds away from the center 
toward the edge of the crater.    With this remark the treatment of the fourth regime 
is brought to a close. 

A Summing Up 

A few weaknesses appear irTThe preceding analysis,  and deserve to be 
pointed out.    In the first place,   the plethora of empirical parameters appearing 
here may be somewhat discouraging:   1^   in (3);     R*  j    RJ    .   R^J and    R*,'   in (4) 
and (5); A 
(33); 

>);Ap      BptAr,Br    p  and r    in (9) and (10); k,     v and c     in (31);   A   in 
^    in'OS);  n,  Kp and' Kr  in (45) and 06); ^8   in the discussion of the melting 

process in the third regime,       A   and the components    8p and    8<y     of  8_      in 
(52);   the velocity of extrusion    W|     in the   fourth regime;   and finally the coefficient 

C|     in (55).    A total of twenty-five.    About half of these could be obtained directly 
experimentally 
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(R* , R|' . Ro ,  Rl  , Ap , Bp ,  Ar , Br , p , T , /S , k , v ,  c , A ,  Kp , KT). 

If it were desired to obtain them all precisely, a rather large number of carefully 
defined trials would have to be made.    Thus the use of this model,  if any,  is in the 
qualitative and semi-quantitative predictions which may be made with it.     A few of 
the assumptions are somewhat questionable.    Two will be dealt with here. 

First is the assumption in (38) of a linear relation between energy dissipated 
or "split off" by rupture and the distance from the rear end at which rupture occurs. 
This is supported by the following reasoning.    The rupture piece (rear end) possessed 
a certain amount of energy before rupture,   equal to the (initial) kinetic energy per 
unit length times the length of the piece.    In rupturing,  the kinetic energy of this 
piece,  considered as a unit,   will be reduced by a certain amount;   but the absolute 
and reduction in energy must apparently be dependent linearly upon the amount 
available initially. 

The second is the neglecting of the effect of the melting and extrusion of 
material on the deformation potential "seen" by the remainder of the projectile and 
target.    The particles extruded in the process can no longer effect the incremental 
change in lattice potential energy,  and it might be expected that this would lower 
the incremental deformation potentials of the lattices at any time by a substantial 
amount.    The author believes,  though,  that this change would be quite small,   rather 
than substantial. 
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APPLICATION OF "HYDRODYNAMIC" THEORY TO THE 
LOW STRESS RANGE OF HYPERVBLOCITY IMPACT PROBLEMS 

Ian M.   Fyfe 

The Boeing Company 
Seattle, Washington 

An essential feature of a mathematical model for a physical phenomenon 
is that it be tractable to known methods of solution.    In stress wave propagation 
this is often achieved by making certain simplifying assumptions,  as for example, 
when the material behaves elastically,   or for higher stresses when it follows a 
particular elasto-plastic rule of behavior.    It is the purpose of this paper to show 
that by limiting the physical configuration of the phenomenon it is possible to reduce 
the mathematical complexity of a mathematical model without imposing any undue 
restriction on the physical properties of the material under consideration. 

Though the particular theory developed is not restricted to any stress level, 
it is regarded as being mainly applicable to low stress levels where the assumption 
that the medium is a fluid may possibly not be valid.    In hypervelocity impact,   low 
stresses will occur near the rear surface of a plate when a wave reflects from that 
surface,  or in the tail of a stress pulse. 

Starting from the general statements of conservation of mass, momentum 
and energy (after having made the basic assumption that the process may be des- 
cribed by a continuum and is influenced only by surface, body and inertia forces), 
we obtain the following equations for a three-dimensional curvilinear system: 

ff-'MMi =0 (l) 

•j 
rlU   F'-^O (2) 

rlj      7-JI 

T       =r (3) 

^-(riJ,),.-Fivi+Pvi$-0 (4) dt   --v-i ■   1   ^ a. 



HYDRODYNAMIC THEORY TO LOW STRESS RANGE 

where   rij      is the stress tensor,   F1    the components of the body forces,   o1 

the components of acceleration.   v!     the components of velocity.   P   the density, 
and   e     the internal energy.    The notation used is that of Sokolnikoff vl) so that 
a comma denotes the covariant derivative with respect to the space variables and 

b_ 
3t       is the intrinsic derivative.    The above equations apply equally well to a 

solid or fluid,  and it is only by the introduction of the constitutive equations 
(or equations of state) that the medium is defined. 

A restriction will be made to the problem under consideration, namely 
that the wave propagation be one-dimensional.    It will be shown that this restric- 
tion is quite realistic when considering hypervelocity impact problems.    By one- 
dimensional,  we mean the deformation is a function of only one space variable. 
Thus,  if we consider an element enclosed in a body,  we see the particles com- 
prising the element are allowed to move in one direction only.    We can now let 
the displacement in the propagation direction be such that •f(x,,t)      and 

U2= U3=<^ T'ie closest physical realization to this idealization is shown 
in Figure 1 where for simplicity the coordinate system is shown to be rectangular. 
The undeformed element a is shown deformed to b after the passage of the wave 
front c   . 

r,. •ilw 

"Z^ 

Z 

Figure 1.    One-Dimensional Wave Propagation 

As the head of the stress wave passes over the typical element it will 
undergo an axial contraction in the  x^   direction.    The amount of contraction or 
elongation in the   X2  direction is controlled by the surrounding elements.    As 
all elements are identically loaded in a plane normal to x^    , they cannot all 
expand (or contract) until the wave from the boundary lying in the   X2  direction 
allows each element to move.    Due to the rapidity of the distortion process, 
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this boundary need not be too far removed to be essentially at   oo .    Those 
stringent requirements of one-dimensionality are;   that the load be uniform in 
space, and that the wave-length of the disturbance be small as compared to the 
distance to be travelled by the rarefaction wave from the boundary.    Physically 
such problems can be encountered in the impact of thin plates,, high explosive 
loading,  and exploding foil loading. 

In most cases, one-dimensional wave propagation can take place in either 
a sphere, a cylinder, or a flat plate,  and for this reason, and also simplicity, 
we will only consider the classic coordinate systems of rectangular,  cylindrical 
and spherical. 

If equations (1) through (4) are expanded for the following coordinate 
systems, we have: 

(a)   Rectangular 

coordinates  x,y,T 

dt +p ax 

P —- - F   - r  d t x 

p M. L 

= 0 

d * 
= 0- 

dt      ax  (Txxvx)-frxVx 

dv 
+ ^xTT 

x,/ 
(5) 

(b)   Cylindrical 

coordinates   r,B,T 

dP 
d t + P (1^4 

dt 
^ Tr r I I 

'Ir-dT'^-^-^r+^T^0 

(c)   Spherical 

coordinates   r, 0,0 

--|-Trr   =0 
dt       ■'      dr     "    r   ■00X r   '«M       F   'rr 

(6) 

(7) 
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Let us at this point introduce the pressure using the usual definitions of 

if the material is a fluid this would reduce to 

n'-T1  --T2--r3 

and when introduced into equations (5),   (6),  and (7),   we have the following corre- 
sponding set of hydrodynamic equations: 

(aa)   Rectangular 

t^ + p^-Q 111 
d t    ' ^   dx 

p—5 - F    + —— =0 
^dt x        ax 

dp (3    ,       > dvy (8) 

(bb)   Cylindrical 

d«, 

(cc)   Spherical 

dp 
dt '{-£    +Jh*r)-0 

^-Fr  +   ^ = 0 

^  +  ^Pvr) 
+  2^p-Frvr+n^=0 

(10) 

An examination of equations (5) through (10) indicates that these equations can 
be grouped by considering the number of constitutive equations required to match 
the number of equations to unknown dependent variables.    In equations (5),   (8), 
(9),  and (10),  assuming body forces are defined,   we need only one additional 
equation.    This equation will represent a relationship containing the surface 
forces,    i.e.,      p^f,^)      or ^U^..) 
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In equations (6) and (7),  however,  we need at least two constitutive equations, 
e-e-.   rrr-- f3{^e---) and r9g--\(p^—) 

Let us consider equations (5) of the first group which is the only set which is not 
representative of fluid flow.    It can be noticed that the only requirement to make 
equations (5) identical to equations (8) would be to replace    T        by   p      .If 
this is done without requiring _=-,-= r we have a set of equations Txx     yy     « 

which are mathematically identical to (8),  but not the conservation equations of 
fluid flow.    For "/ant of a better means of identification these equations will be 
called the "hydrodynamic" equations.    This definition of hydrodynamic is purely 
a mathematical one.    If equations (5) can,  at least mathematically,  be grouped 
with the hydrodynamic equations we can use some of the well-known techniques 
to solve such equations as those indicated    in "' and ");   the technique being 
somewhat controlled by the form of the constitutive equation.    In this way,  many 
existing machine codes can be used at all stress levels as long as a rectangular 
coordinate system is used along with the appropriate constitutive equation de- 
pending on the stress level reached in the process,  e. g. ,  elastic,  plastic,  or 
fluid. 

The simplicity obtainpd by such a configuration is somewhat offset by the 
information that can be obtained from such a. set of equations (5).    If these equa- 
tions are used to obtain the constitutive equations only    T^    can be found and 
no means are directly available to find     Ty„       or    T^ as the functional re- 
lationships of density,  etc.    Generally,   however,  the need to know    Tyy or 

Tiz        is not a requirement and this lack of knowledge presents no problem. 
An exception to the above does exist,   however,  where one wishes to use,   for 
example,  some yield c-r failure criterion to predict the change from one constitu- 
tive equation to another.    This can occur when the stress level rises above the 
elastic range to the plastic,  and it is required to use,  for example,   either the 
Tresca or Von Mises yield criterion to indicate when the change occurs.    The 
following outlines how this can be overcome by introducing additional experimental 
data. 

In the elastic range of stresses the following stress-strain or constitutive 
equations hold for a homogeneous isentropic medium 

where X   and fj,  are the Lame constants,    v = B-.-.   and        i_ is the strain tensor. 

If we introduce the requirements that the strain be one-dimensional,  we have,  for 
a rectangular coordinate system. 

{X + Z^e^ (ID 

Tyy=T«=Xex, (12) 
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where it can be observed that if we require only equation (11) to solve (5) there 
is no need to distinguish' X   from ^ .    However,  if we wish to use the Von Mises 
yield criterion which is,  in general 

i-H V.*',,* yy^zz 
rMTxx   TxxTyy' 

reducing in particular,  on the introducti'       ' (12),  to 

k = 'rxx " Tyy' 
where k    differs by a numerical factor from the yield parameter   f   ,   we require 
a distinction between \   and fL in order to obtain    Tyy    .    A number of experi- 
mental techniques to do this are outlined in ^4).    For stresses beyond the yield 
stress this problem is not so simple and is still a matter for research.    Because 

xx^ 'yy 
we can expect shear stresses of considerable magni- 

tude in some plane not perpendicular to the wave propagation.    Using a technique 
similar to that given in ^',  it can be shown for an elastic solid that 

■^-(xkjKS^ (X+2/.)' 
in a plane where  I   is the direction cosine of its normal and has a value of 1 /4. 

The conclusions that can be extracted from these simple observations are 
important in the analysis of stress wave propagation;   in particular when the 
equations are for a rectangular cartesian coordinate system and the stresses vary 
from very high compressive stresses to high tensile ones. 

When such equations as (5) and (8),  or the equivalent Rankine-Hugoniot 
equations,  are used to obtain the constitutive equations,  the requirement that the 
material be considered a fluid is not necessary.    If the material were not fluid 
like,  the symbol   p    could only represent the principal stress      r^ ,  and 
further information is required to describe the state of the material.    Thus, 

P obtained for very high stresses may be considered as pressure with applica- 
bility in all coordinate systems while   p    at low stresses applies only to a rec- 
tangular system. 

As many computational schemes for solving stress wave propagation prob- 
lems are in a machine code,   the fact that the same equations,  except for the 
constitutive ones,  can be used at all stress ranges is a considerable reduction in 
complexity. 

In systems where the geometry is not rectangular,  and the stresses range 
from extremely high to quite low,   for example,  an internally loaded cylinder,   it 
is important to determine when tne rigidity becomes significant in order that the 
computations can switch from equations (9) to (6).    The difficulties inherent in 

Tw and as using equations (6) to obtain constitutive equations for 
functions of density and energy,  etc. ,  as compared to using   (9) to obtain one 
constitutive equation for    p   ,  are obvious. 

This work forms part of a research program undertaken by The Boeing 
Company.    1 am indebted to the Applied Physics Section for permission to present 
this work. 
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VISCO-PLASTIC * i^OW THEORY IN HYPERVELOCITY 

PERFORATION OF PLATES 

Pei Chi Chou 

Drexel Institute of Technology 
Philadelphia,   Pennsylvania 

INTRODUCTION 

In the analysis of the hypervelocity impact problem, only two theories 
have been used:   the incompressible hydrodynamic theory and the compressible 
shock wave theory,    (Refs.  1 and 2.)   Both of these theories consider the solid 
materials under impact as fluids,  and the analyses are similar to that for 
standard perfect fluid theory in fluid mechanics, where the viscosity of the 
fluid is neglected.    For certain special cases of impact,  the omission of the 
viscosity may be justified, but the fact is,  an exact understanding of the effect 
of the viscosity is still unknown. 

In fluid mechanics the importance of viscosity depends on the type of 
flow motion.    For conventional fluid flow,  the viscous stress is high inside the 
boundary layer but may be neglected altogether outside the boundary layer.    For 
a fluid with linear viscosity,   that is,  a Newtonian fluid,  the viscous shear stress 
is 

For ordinary fluids the coefficient of viscosity    a       is a small number. 
Nevertheless,  inside the boundary layer the velocity gradient d\l/dx is very 
large and as a result,  the product fidv/dx is comparable in magnitude tothe 
pressure and inertia stresses.    Under hypervelocity impact,  the magnitude of 
the coefficient of viscosity of different materials is still unknown.    Regardless 
of the value of this coefficient (as long as it is not zero),  the viscous stress will 
be high and may become predominant if    Eif      is extremely high. 

d% 
In order to gain some insight into the effect of viscosity,  the case of the 

perforation of a thin plate by a circular cylinder is considered.    Based on avail- 
able test results,   it is felt that viscosity plays a'mor« important role in per- 
foration problems than it does in cratering problems.    Visco-plastic properties 
of the material are assumed and the governing equations derived.    The solution 
of these equations are plotted in the form of velocity displacement,  strain and 
strain-rate vs.   radial distance curves.    The perforation diameter,   loss of 
momentum and residual velocity of the projectile are also obtained. 
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The results of a preliminary study using viscous theory were first re- 
ported in Reference 3.    Some additional results and explanations are given here. 
The mathematical derivations are summarized in Appendix I. 

Recently it has come to the author's attention that articles using a similar 
visco-plastic approach have appeared in the Russian Journal of Applied Mathe- 
matics and Mechanics.    These purely theoretical treatments by the Russians are 
discusssd and compared with the author's theoretical analysis in Appendix II. 

II.    ASSUMPTIONS 

Spherical or cylindrical projectiles are considered and thus the problem 
is axially symmetrical.    The mechanism of perforation is assumed to be "plug- 
ging" by shear rather than "petaling",  "radial flow" or "fragmentation" as de- 
picted in Figure 1.    The plugging mode of perforation considered here is different 
from the low speed plugging of brittle material.    Rather it is the type of perforation 
which usually occurs at high velocity impact (above 3,000 ft/sec) on thin plate. 
Under hypervelocity impact,  fragmentation or shattering is usually observed.    It 
is assumed here that fragmentation occurs after the plug has been sheared out of 
the plate and that shear strain is the only dominant strain component during the 
period of perforation.    The rigid projectile with radius "a" travels at an initial 
velocity V0.    Upon impact with the plate,  the projectile with the portion of the plate 
with radius "a", are assumed to travel as a rigid body with an initial velocity v0. 
The velocity v0 is calculated from   VQ   using momentum relations.    We are inter- 
ested in the motion and stress in the region of the plate with radius   r >   a   after 
impact.    (See Fig.  2) 

The strain is assumed constant across the thickness of the plate;   all vari- 
ables are,  therefore,  functions of radial distance   r   and time   t   and are independ- 
ent of the axial location   Z   .    This assumption is believed to be valid if the diameter 
of the projectile is much larger than the thickness of the plate and if the impact 
velocity is high.    Since on the free surfaces of the plate,  the shear stress rrz must 
vanish,  the assumption of constant strain across the thickness is in error near the 
surfaces of the plate.    For this reason,  this theory is not accurate for very thin 
plates.    These assumptions will be further discussed at the end of this paper when 
the solutions of the equations are obtained. 

III.    EQUATIONS AND SOLUTIONS 

For the assumptions stated, the only equation of motion is 

dr 
dr+f = P^ (1) 

where T  is the shear stress,  p   the mass density of the plate and   w   the dis- 
placement in Z -direction.    The left-hand side of this equation represents the 
resultant shear force and the right-hand member is the inertia force on the cir- 
cular ring element as depicted in Figure 3. 

The visco-plastic property of the material for this special case is assumed 
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Figure i.     Forces on a Circular Ring Element 
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to be 

(2) 

where   y      is the shear strain,   ft      the coefficient of viscosity and   k      Uie 
yield stress in shear.    The relations between   y      ,     w 

(3) 

and 

%-$ 
In Equation 2 the stress    T     is considered to consist of a constant part,  equal 
to the yield stress,  and a viscous part with constant coefficient of viscosity. 
The elastic stress of the material is neglected,  because its value is much smaller 
than the viscous or inertial stresses under hypcrvelocity impact.    Equation 2 can 
also be derived from the general three-dimensional visco-plastic equations.  (Ref. 
2.)   Other types of equations relating stress and strain-rate in place of Equation 
2 have been used by other investigators and are discussed m Appendix II. 

Combining Equations 1,   2 and 3 yields the following governing differential 
equation, 

57*     r dr      r /x     v dt 

where    v   = kinematic coefficient of viscosity P 

(4) 

The initial and boundary conditions may be expressed as 

v=0 AT       t = 0   ,    r>a 

AT v = v0 

-hWh'^-ft-O   AT 

t=0   , 

t>0 , 

r = a 

r = a 

r = oo 

where 

(5) 

V=0 AT 

M=M, + 7ra2h/o 

The third equation of Equations 5 is derived from the equation of motion of the 
projectile (together with a portion of the plate of radius "a") after impact. 

Equation 4 is a parabolic partial differential equation of the heat transfer 
or diffusion type.    As summarized in Appendix 1,  Laplace transforms and 
asymptotic expansions are used to obtain a solution which satisfies Equations 5. 

The solution is expressed in terms of displacement,  velocity,  shear 
strain and shear strain-rate,  all as functions of the radial space coordinate 
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r    and time   t.    Numerical calculations are made for these quantities and the 
results plotted in Figures 4 through 7.   The case   H » 0   corresponds to a 
projectile of infinite mass and constant velocity after impact.   The case of 
H » 0. 423 corresponds to the perforation of a plate with the following given 
values of the parameters: 

0      =   radius of projectile =3/64" 

Mi     =   mass of projectile 

p      -■   density of plate 

M      = Mt+  ira2hp 

= 3. 56 x 10"b slug 

= 5.2   slug/ft3 

= 4, 5 x 10"6 slug 

H 

t' 

= thickness of plate = 3/64" 

= coefficient of viscosity    = 10016'sec/ft2 

M 

dimensionless time 

' 0.423 

= pa2 

The displacement    z     is shown in Figure 4,  velocity v    in Figure 5, strain 
.äZ.     in Figure 6 and strain-rate    dv      in Figure 7. 
dr or 

The value for the coefficient of viscosity is estimated,  because the exact 
value is unknown at the present.    The basis for the estimation is discussed in 
Reference 3. 

Because of the nature of the differential equation,  the calculations indi- 
cate that the viscous wave due to impact is felt immediately at infinity, although 
with infinitesimal intensity.    For a disturbance of finite strength, the speed of 
propagation is finite,  although not constant in value.    This is in contrast with 
the case of an elastic wave or a shock wave which propagates with a constant 
velocity. 

IV.    SEPARATION CRITERION 

In order to facilitate the discussion of the failure behavior of the material 
under dynamic loading,  the term "failure" is used here to denote the occurrence 
of an irreversible change, as defined by Dr.  Rinehart (Ref.  2).    In this sense, 
failures may be either fractures or plastic flows.    It is known that when the im- 
pact velocity   VQ is above a few thousand feet per second, the stress at the shear 
surface is much larger than the ultimate strength of the material.    (See Fig.   8.) 
If the material is not viscous,  the plate material will separate at this surface 
and no stress can be transmitted through it (except the shear yield stress, which 
is small as compared to other stresses).    However,  if the material is viscous, 
even though failure has occurred,  it can still transmit shear stress and can be 
considered as a continuum.    In other words,  under hypervelocity impact,  solid 
materials behave like fluids.    They may behave like non-viscous fluids, which 
cannot transmit shear, or viscous fluids, which transmit shear.    When shear 
stress (and axial particle velocity) cannot be transmitted, the material ceases 
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figure 4a.    Displacement vs.   Radial Distance Curves (H = 0) 
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Figure 4b.     Displacement vs.   Radial Curves (H = 0.423) 
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Figure 5a.    Velocity vs.   Radial Distance Curves (H = 0) 
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Figure 5b.    Velocity vs.   Radial Distance Curves (H = 0. 423) 
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Figure 6a.    Strain vs.  Radial Distance Curves <H = 0) 
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Figure 6b.    Strain vs.   Radial Distance Curves (H = 0. 423) 
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'■'igurc 7a,    Strain-Rate vs.   Radial Distance Curves (H = 0) 
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Figure 7b.    Strain-Rate vs.   Radial Distance Curves (II = 0.423) 
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to be a continuum and separation occurs. 

It is hypothesized therefore,  that the actual separation occurs when the 
material changes from a "viscous fluid" into a "non-viscous" fluid.    In equation 
form this separation criterion is expressed as 

/x-^-<c,k       and       -^->c2 

or (6) 

( ^F)CR =   M :      (3r tp = c2 

where cj    and   C2   are two constants.    For the numerical calculation in this 
paper,    cj * 1   and C2 = 0. 02 are assumed. 

V.    RESULTS AND DISCUSSION 

The impacts on a 3/e4"-thick plate by a 3/32"-diameter sphere (H = 0. 423), 
with four different velocities are cqnsidered and the results are tabulated in Table 
I.    The values for crit:   il strain  (dz/drlro    an^ critical strain-rate    (dv/dfL^, 
are calculated from E       tion 6,  with the estimated value of   k s   lO^psi.    On the 
expanded strain vs.    r/a   curves (Fig.   9),  a horizontal dotted line is drawn for 
each value of      (dz/dnCo .    From the intersection points between the dotted lines 
and the solid curves,   the critical strain-rate propagation curves are obtained and 
plotted in Figure 11,  with   t1   as ordinate and   r/a   as abscissa.    Similarly the 
critical strain-rate propagation c--"ves are obtained from Figure 10 and plotted 
in Figure 11. 

In Figure 11 the region above the critical strain '^*/"r'cD   curve has very 
large strain and the material may be considered as fluid.    The region below 

(dz/df)--      indicates low shear strain and the material is solid.    The critical 
strain-rate curve also divides the   t' - x   plane into two regions;   above the curve 
the material is viscous and below non-viscous.    The intersection point   P   of 
these two curves gives the time and location of the material separation or perfora- 
tion,  since beyond this point the material would behave like a non-viscous fluid 
according to the theory. 

The radius uf perforation   rp   vs.   initial impact velocity curve is shown 
in Figure 12.    It may be seen that the radius of perforation increases with in- 
creasing impact velocity,  which agrees with most experimental results.    (Ref. 4) 

For all the four initial velocities considered,  the perforations occur within 
one microsecond after the initial contact between the projectile and the plate,  as 
shown in Table I.    At the moment of perforation,   the displacement and velocity 
distribution along the radius are shown in Figures 13 and 14 respectively.    At the 
separation surface the displacement is very small,  which indicates that the plate 
remains essentially flat with no "lips" after the impact.    The residual velocity 
of the projectile is denoted by   Vp   and may be read from Figure 14. 
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Figure 8.    Separation Criterion 
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Figure 10.    Expanded Strain-Rate (i3£ ^ Curves 
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Figure 11a.    Critical Strain and Strain-Rate Curves (V0 = 3940fps) 
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Figure lib.    Critical Strain and Strain-Rate Curves (V0 = 7130fps) 
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Figure 12.    Radius of Perforation (  ^) vs.   Initial Velocity (V0) Curves 

320 



VISCO-PLASTIC FLOW THEORY 

ClMCHts) 

1.0      i.t      L4      i.s      i.e     e.o    2Ä     e.4    c.e    e.«     ax»     s.e    3.4     s.« 

Figure 13.     The Displacement Distribution at the  Moment of Perforation 
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The loss of kinetic energy by the projectile is calculated by two formulas 

AE,» Lvi1(v6
2-vo2)= 24-^)2]v» 

AE2=gMl(V0
2-v2) 

(7) 

(8) 

Equation 7 gives the initial loss of energy by the projectile immediately after 
impact.    Equation 8 gives the total loss of kinetic energy by the projectile. 
These two energy losses are plotted in Figure 15.    The loss    AE,    is a quad- 
ratic function of   V0   while   AEo is proportional to   V0

2- 06. 

j 

yO.TC-IOT'x*0* 

10.000 

Figure 15.    Loss of Kinetic Energy,Curves 

^« 0.66feMCr4 X* 

20,000 

During the impact,  the projectile and the plate material directly in contact 
with it are under high pressure.    They are compressible rather than rigid as 
assumed in the present theory.    However, it can be shown that in certain cases 
the rigid material assumptions are justified.    As discussed in Reference 1,  com- 
pression shock waves are generated immediately after the impact.    If the thickness 
of the plate is small as compared  to the radius of the projectile and if the shock 
velocity is high, the shock wave pattern is essentially one-dimensional within the 
first few microseconds,  except in the region near the edge of the contact area. 
Since, according to the present theory, the total perforation process takes place 
within one microsecond,  it seems reasonable to assume that the projectile and 
the portion of plate directly in contact with it move as a rigid body, and the radial 
component of the plate particle motion may be neglected.    A more detailed analysis 
is required to establish the accuracy of the present assumptions as influenced by 
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the initial velocity,  projectile radius,  plate thickness and coefficient of viscosity. 

In conclusion it may be mentioned that although certain of the results of 
the present analysis agree with known test data,  they can only be considered as 
qualitative indications of the viscosity effect in hypervelocity impact.    For a 
quantitative analysis,  the exact values of the coefficient of viscosity must be 
known;   the compressibility effect and the radial component of the particle motion 
will probably also have to be included. 
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TABLE I 

PERFORATION OF 3/64"-PLATE 

a '    . 0469 in. 
/> » 5. 2 slug/ft3 

h •    . 0469 in. 
M » 4. 5 x 10'6 slug 

Mi = 3. 56 x 10'6 slug 
H - 0.423 

V0fps 3940 7130 12,000 20,000        1 

vo  fps 3090 5600 94 90 15,800        ! 

("5r^CR     Vo 0. 18 0. 10 .0593 . 0356 

_^dr'CR  avo 0.032 0. 018 . 0104 .0062 

IE 
i        a 

2.34 2.77 3. 25 3. 63 

fp(SEC) 0.378xl0'6 0.493xl0"6 0.572xl0'6 0.684x10   ] 

Vpat (^-=|)fps 2200 3 800 6200 8700       j 

APPENDIX I:   SOLUTION OF THE GOVERNING EQUATIONS 

Applying the Laplace transform to Equation 4 results in 

i!l + ±M - J-Js__q2v 
afz +   r   dr        r  ftp' (1-1) 

where  v    is the transform of   v; q2=-^-       and   p   is the parameter of the 
transform.    Introducing 

r' = qr, 0'= qa    AND    c = ^pq 

J2.-7 -■ _   C 
" - T1 

The boundary conditions,  Equations 5,  transform into 

Equation 1-1 becomes 

(1-2) 

■ 
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h/iq-^1--p--pv + vo-0 AT (1-3) 

AS   r — 00 ,    7=0 (1-4) 

The initial conditions are satisfied by the transforms 1-2 and 1-3.    The general 
solution of the homogeneous equation associated with Equation 1-2 is 

V = AKod^ + BMr') (1-5) 

where   1.   and   Ke   are the modified BesseL functions of the zero order, and of 
the first and second kind respectively;   A   and B   are constants.    The particular 
solution for Equation 1-2 is obtained by the method of variation of parameters. 
The Wronskian of the general solution of the homogeneous equation is 

W = (KoI'o-IoK;) = -p (1-6) 

(1-7) 

where prime represents differentiation.    It can be shown that the particular 
solution of Equation 1-2 is 

V== c[l./k.dr'- K./l.ar'] 

The general solution of Equation 1-2 is thus 

v = AK.(r') + BI.{r') + cfl./k.dr'- K./Ldr'l L •' •'        J (1-8) 

At   r' = CO ,  the functions    K.  ,  I.jK.dr'     'and    Kojlodr' all vanish.    There- 
fore,  to satisfy Equation 1-4,   it is only necessary to set   B = 0.     Substituting 
Equation 1-8 into Equation 1-3 yields the constant   A, 

h'K 
A = v.-'P" + /Kaar'c[h^qlUo')-pI.(a'fl+.ft.ar'C[-h'/xqK;(a')+pK.(a')] 

pK.laVh^qKUa) 
and the solution of Equation 1-2 which satisfies Equations 1-3 and 1-4 is 

V = AK.d-') + c[l.,/k.ar'- K./l.dr'] 

(1-9) 

(I-10) 

Using the inversion theorpm,    V    oould b3 obtained from Equation 1-10,  although 
it would be too cumbersome for numerical evaluation.    For simplicity,  the yield, 
stress   k   is dropped, because it is much smaller than the viscous or inertia 
stresses.    Because only a small time interval is of interest,  the following asymp- 
totic expansions of   K0 and   K,    are used: 
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K1(r
,)-(^)"2^,{n-^-TäF,2+-—} 

The resulting equation, after algebraic simplification,  is 

Using standard transform tables gives 

v = Vo{v4: erfc 2^ + R42^' ierfc v? 

+ R54t' i2erfc j^n + } 

The corresponding displacement,  strain and strain-rate are 

z = (4v.t) {y^- i2erfc ^4; + R4 2^ !3erfc TQ 

+ R54t'i4erfc-|^r + } 

dz _ ovo dt'/_ J    /I iprf. Id. + R i2prfr r-' 
37 - — 411 27? V ? ierfc 2^ + ^i1 ertc 2yF 

+ 2VT,R2i3erfc|^ + 4t'R3i4erfc ^ + } 

r    +R.^cf> 

where 

(1-11) 

a-12) 

(1-13) 

(1-14) 

where   r= — 

+ 2V?R2ierfc^r + 4t'R/erfc-|^ + } 

R.=v^[i-^-H] 
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APPENDIX II:   OTHKR VISCO-PLASTIC SOLUTIONS 

The visco-plastic shear wave propagation following an impact on a plate has 
also been studied by Bachshian (Ref.   5) and Kochetkov (Ref.  6).    The basic 
assumptions made by these authors are similar to those discussed in the present 
paper.    The main difference is that in References 5 and 6,  the wave propagations 
due to low speed impac.ts (below 100 ml sec) are studied, as in contrast to the high 
speed perforation analyzed in the present paper. 

The basic differential equation derived in Reference 5 is identical to Equation 
4 of the present paper.    The initial conditions are also identical,  but the boundary 
conditions are different.    In Reference 5 the velocity of the projectile is assumed 
constant after the impact (equivalent to   H «0 case), and thus the solution is 
limited to very large mass projectiles.    To avoid the difficulty at   r »GO, a plate 
with finite radius   r * b   is considered and the boundary condition at the edge of 
the plate is 

0      AT    r  =   b (II-1) 

Since low speed impact is of interest,  the yield shear stress   k   is retained in 
the equation.    By introducing non-dimensional variables 

x = r/a 

T = kt//. 

u = v/v» 

the differential equation is changed into the form 

K;>at   ax2    x ax    x 

(II-2) 

where 

R = fly. 

Saint Venant Number 
(or Bingham Number) 

Reynold Number 

(II-3) 

(U-4) 

(II-5) 

The solution involves a combination of Bessel functions.    For numerical example, 
the following values are used 

k = 4000 kg/cm2      (=62000psi) 

/!= 0.4 kg-sec/cm2 (S 820 lb-sec/ft2) 

a= 10 cm 

/?= 8Xio"6kg-sec2/cm4 

327 



VISCO-PLASTIC FLOW THEORY 

Dimensionless deflection and shear stress during the impact are plotted. 

In Reference 6, the material of the plate is assumed to be elastic-visco- 
plastic. When the shear stress is below the yield limit, an elastic stress-strain 
relation is used.    Above the yield limit, the following relation is assumed: 

ff-MMi-ih^)] 
(11-6) 

where   G   is the shear modulus of elasticity and   F   (  y   )   is an empirical 
function.   For the ideally plastic case,    F   (  y   ) = K    .    where   k    is the yield 
limit.    For a linear strain hardening material,    F   (   X ) _ i. f, 4. /   2    AIXO.    id 

is assumed.    The resulting equations are of the hyperbolic type and the method 
of characteristics is used for their solutions.    Graphs are plotted for the ideally 
plastic case giving the stress and velocity histories in the plate and the distri- 
bution of the residual strain. 
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SUMMAxtY FOR THK THEORY SESSIONS 

Floyd E.  Allison 

Ballistic Research Laboratories 
Aberdeen Proving Ground,  Maryland 

The papers presented during the last two sessions have considered some 
of the problems encountered in describing the mechanics of hypervelocity impact. 
Due to time limitations, there are also a number of papers published in the pro- 
ceedings that have not been presented for open discussion.    However,  there has 
been sufficient discussion to indicate the magnitude of the problem.    For obvious 
reasons it is not possible to evaluate at this time the progress that has been made 
in developing the theory.    However,  a few comments of a more general nature do 
seem appropriate. 

There does not appear to be sufficient evidence to assume a priori that 
mechanical resistance to shear is going to be completely negligible in the 10 to 
20 km/sec velocity range.    At the same time it is not possible to extrapolate the 
purely empirical relations between crater dimensions and velocity, which have 
been obtained in the 0 to 10 km/sec velocity range.    Therefore, empirical rela- 
tions determined at higher velocities or a theory that is valid in the lower velocity 
range and can be used to extrapolate to the higher velocities is urgently needed. 

In order to obtain a solution to the hypervelocity impact problem based 
on fundamental principles of mechanics,  one must eventually come to grip with 
the problem of non-linear time-dependent differential equations in two space 
dimensions.    It is obvious that a satisfactory solution of the problem based on this 
approach will require the use of high-speed.digital computers.    During the early 
phase of the crater formation process,  the problem can be described by non-steady 
compressible fluid flow,  and most of the tools for solving this part of the problem 
are available.    The subsequent motion of the material,  during which some fraction 
of the projectile energy may be dissipated in doing work against internal forces of 
the target, poses a more difficult problem.    The resistance of the material to shear 
in the flow behind the shock may be considerably important.    Unfortunately, one- 
dimensional treatments that include the effects of strength and viscosity on the 
shock structure do not provide any real information concerning the effects of these 
parameters under conditions of shear.    As Dr.   Hopkins has pointed out,  basic data 
on the behavior of solids, particularly data relevant to the constitutive equations,  are 
potentially useful provided the rate of deformation approaches that encountered during 
hypervelocity impact. 

There is ■also .^n alternative approach to the problem which would use some 
form of simplified theoretical model.    However, if the theoretical model is to be 
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useful as a guide for planning the research program, it rr.ust. be chosen to repre- 
sent physical reality, and not merely because it is mathematically tractable. 
Also, the mathematical difficulties are a property of the differen ial equations 
governing the process, and they cannot be removed solely by me^ns of simplifying 
assumptions.    If a satisfactory theoretical model is found, it will almost surely 
require the empirical determination of additional quantities or functions,  which 
will then enable one to circumvent the difficulties inherent in the rigorous treat- 
ment of the problem.    Unfortunately it appears that calculations involving hyper- 
velocity impact effects are relatively insensitive to the assumptions used in setting 
up the theoretical model.    Experimental observations over a lim.ted range of any- 
one of the commonly measured parameters can apparently be explained by several 
different theoretical models. 

Another way of phrasing the difficulty is that critical parameters are not 
being measured experimentally.    Additional data of the final crater dimensions 
in the lower velocity range are not going to assist the development of a rigorous 
theory or a physically acceptable theoretical model.    Additional c'ata of the usual 
type in the higher velocity range for a few selected materials woi/- ' be useful in 
clarifying one or two difficult questions.    Detailed and accurate data concerning 
the flow pattern during the formation of a crater as a function of lime for a few 
selected target materials are potentially very useful, even if the   mpact velocities 
are in the lower velocity range.    It is interesting to speculate abc ut the possibility 
that hypervelocity impact experiments,  together with a sound theoretical analysis 
of the problem, may provide  .*xe means for obtaining basic information concerning 
the appropriate constitutive equations. 
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